1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
use bio::stats::LogProb;

use model::evidence::Observation;
use model::AlleleFreq;

/// Variant calling model, taking purity and allele frequencies into account.
#[derive(Clone, Copy, Debug)]
pub struct LatentVariableModel {
    /// Purity of the case sample.
    purity: Option<LogProb>,
    impurity: Option<LogProb>,
}

impl LatentVariableModel {
    /// Create new model.
    pub fn new(purity: f64) -> Self {
        assert!(purity > 0.0 && purity <= 1.0);
        LatentVariableModel {
            purity: Some(LogProb(purity.ln())),
            impurity: Some(LogProb(purity.ln()).ln_one_minus_exp()),
        }
    }

    pub fn with_single_sample() -> Self {
        LatentVariableModel {
            purity: None,
            impurity: None,
        }
    }

    /// Likelihood to observe a read given allele frequencies for case and control.
    fn likelihood_observation_case_control(
        &self,
        observation: &Observation,
        allele_freq_case: LogProb,
        allele_freq_control: LogProb,
    ) -> LogProb {
        // Step 1: probability to sample observation: AF * placement induced probability
        let prob_sample_alt_case = allele_freq_case + observation.prob_sample_alt;
        let prob_sample_alt_control = allele_freq_control + observation.prob_sample_alt;

        // Step 2: read comes from control sample and is correctly mapped
        let prob_control = self.impurity.unwrap()
            + (prob_sample_alt_control + observation.prob_alt)
                .ln_add_exp(prob_sample_alt_control.ln_one_minus_exp() + observation.prob_ref);
        assert!(!prob_control.is_nan());

        // Step 3: read comes from case sample and is correctly mapped
        let prob_case = self.purity.unwrap()
            + (prob_sample_alt_case + observation.prob_alt)
                .ln_add_exp(prob_sample_alt_case.ln_one_minus_exp() + observation.prob_ref);
        assert!(!prob_case.is_nan());

        // Step 4: total probability
        let total = (observation.prob_mapping + prob_control.ln_add_exp(prob_case))
            .ln_add_exp(observation.prob_mismapping);
        assert!(!total.is_nan());
        total
    }

    /// Likelihood to observe a read given allele frequency for a single sample.
    fn likelihood_observation_single_sample(
        observation: &Observation,
        allele_freq_case: LogProb,
    ) -> LogProb {
        // Step 1: calculate probability to sample from alt allele
        let prob_sample_alt = allele_freq_case + observation.prob_sample_alt;

        // Step 2: read comes from case sample and is correctly mapped
        let prob_case = (prob_sample_alt + observation.prob_alt)
            .ln_add_exp(prob_sample_alt.ln_one_minus_exp() + observation.prob_ref);
        assert!(!prob_case.is_nan());

        // Step 3: total probability
        let total = (observation.prob_mapping + prob_case).ln_add_exp(observation.prob_mismapping);
        assert!(!total.is_nan());
        total
    }

    /// Likelihood to observe a pileup given allele frequencies for case and control.
    pub fn likelihood_pileup(
        &self,
        pileup: &[Observation],
        allele_freq_case: AlleleFreq,
        allele_freq_control: Option<AlleleFreq>,
    ) -> LogProb {
        let likelihood;
        match allele_freq_control {
            Some(allele_freq_control) => {
                let ln_af_case = LogProb(allele_freq_case.ln());
                let ln_af_control = LogProb(allele_freq_control.ln());
                // calculate product of per-read likelihoods in log space
                likelihood = pileup.iter().fold(LogProb::ln_one(), |prob, obs| {
                    let lh =
                        self.likelihood_observation_case_control(obs, ln_af_case, ln_af_control);
                    prob + lh
                });
            }
            None => {
                // no AF for control sample given
                if let Some(purity) = self.purity {
                    assert!(
                        purity == LogProb::ln_one(),
                        "no control allele frequency given but purity is not 1.0"
                    );
                }
                let ln_af_case = LogProb(allele_freq_case.ln());
                // calculate product of per-read likelihoods in log space
                likelihood = pileup.iter().fold(LogProb::ln_one(), |prob, obs| {
                    let lh = Self::likelihood_observation_single_sample(obs, ln_af_case);
                    prob + lh
                });
            }
        }
        assert!(!likelihood.is_nan());
        likelihood
    }
}

#[cfg(test)]
mod tests {
    use super::*;
    use bio::stats::LogProb;
    use itertools_num::linspace;
    use model::tests::observation;

    #[test]
    fn test_likelihood_observation_absent_single() {
        let observation = observation(LogProb::ln_one(), LogProb::ln_zero(), LogProb::ln_one());

        let lh = LatentVariableModel::likelihood_observation_single_sample(
            &observation,
            LogProb(AlleleFreq(0.0).ln()),
        );
        assert_relative_eq!(*lh, *LogProb::ln_one());
    }

    #[test]
    fn test_likelihood_observation_absent() {
        let model = LatentVariableModel::new(1.0);
        let observation = observation(LogProb::ln_one(), LogProb::ln_zero(), LogProb::ln_one());

        let lh = model.likelihood_observation_case_control(
            &observation,
            LogProb(AlleleFreq(0.0).ln()),
            LogProb(AlleleFreq(0.0).ln()),
        );
        assert_relative_eq!(*lh, *LogProb::ln_one());
    }

    #[test]
    fn test_likelihood_pileup_absent() {
        let model = LatentVariableModel::new(1.0);
        let mut observations = Vec::new();
        for _ in 0..10 {
            observations.push(observation(
                LogProb::ln_one(),
                LogProb::ln_zero(),
                LogProb::ln_one(),
            ));
        }

        let lh = model.likelihood_pileup(&observations, AlleleFreq(0.0), Some(AlleleFreq(0.0)));
        assert_relative_eq!(*lh, *LogProb::ln_one());
    }

    #[test]
    fn test_likelihood_pileup_absent_single() {
        let model = LatentVariableModel::new(1.0);
        let mut observations = Vec::new();
        for _ in 0..10 {
            observations.push(observation(
                LogProb::ln_one(),
                LogProb::ln_zero(),
                LogProb::ln_one(),
            ));
        }

        let lh = model.likelihood_pileup(&observations, AlleleFreq(0.0), None);
        assert_relative_eq!(*lh, *LogProb::ln_one());
    }

    #[test]
    fn test_likelihood_observation_case_control() {
        let model = LatentVariableModel::new(1.0);
        let observation = observation(LogProb::ln_one(), LogProb::ln_one(), LogProb::ln_zero());

        let lh = model.likelihood_observation_case_control(
            &observation,
            LogProb(AlleleFreq(1.0).ln()),
            LogProb(AlleleFreq(0.0).ln()),
        );
        assert_relative_eq!(*lh, *LogProb::ln_one());

        let lh = model.likelihood_observation_case_control(
            &observation,
            LogProb(AlleleFreq(0.0).ln()),
            LogProb(AlleleFreq(0.0).ln()),
        );
        assert_relative_eq!(*lh, *LogProb::ln_zero());

        let lh = model.likelihood_observation_case_control(
            &observation,
            LogProb(AlleleFreq(0.5).ln()),
            LogProb(AlleleFreq(0.0).ln()),
        );
        assert_relative_eq!(*lh, 0.5f64.ln());

        let lh = model.likelihood_observation_case_control(
            &observation,
            LogProb(AlleleFreq(0.5).ln()),
            LogProb(AlleleFreq(0.5).ln()),
        );
        assert_relative_eq!(*lh, 0.5f64.ln());

        let lh = model.likelihood_observation_case_control(
            &observation,
            LogProb(AlleleFreq(0.1).ln()),
            LogProb(AlleleFreq(0.0).ln()),
        );
        assert_relative_eq!(*lh, 0.1f64.ln());

        // test with 50% purity
        let model = LatentVariableModel::new(0.5);

        let lh = model.likelihood_observation_case_control(
            &observation,
            LogProb(AlleleFreq(0.0).ln()),
            LogProb(AlleleFreq(1.0).ln()),
        );
        assert_relative_eq!(*lh, 0.5f64.ln(), epsilon = 0.0000000001);
    }

    #[test]
    fn test_likelihood_observation_single_sample() {
        let observation = observation(
            // prob_mapping
            LogProb::ln_one(),
            // prob_alt
            LogProb::ln_one(),
            // prob_ref
            LogProb::ln_zero(),
        );

        let lh = LatentVariableModel::likelihood_observation_single_sample(
            &observation,
            LogProb(AlleleFreq(1.0).ln()),
        );
        assert_relative_eq!(*lh, *LogProb::ln_one());

        let lh = LatentVariableModel::likelihood_observation_single_sample(
            &observation,
            LogProb(AlleleFreq(0.0).ln()),
        );
        assert_relative_eq!(*lh, *LogProb::ln_zero());

        let lh = LatentVariableModel::likelihood_observation_single_sample(
            &observation,
            LogProb(AlleleFreq(0.5).ln()),
        );
        assert_relative_eq!(*lh, 0.5f64.ln());

        let lh = LatentVariableModel::likelihood_observation_single_sample(
            &observation,
            LogProb(AlleleFreq(0.1).ln()),
        );
        assert_relative_eq!(*lh, 0.1f64.ln());
    }

    #[test]
    fn test_likelihood_pileup() {
        let model = LatentVariableModel::new(1.0);
        let mut observations = Vec::new();
        for _ in 0..5 {
            observations.push(observation(
                LogProb::ln_one(),
                LogProb::ln_one(),
                LogProb::ln_zero(),
            ));
        }
        for _ in 0..5 {
            observations.push(observation(
                LogProb::ln_one(),
                LogProb::ln_zero(),
                LogProb::ln_one(),
            ));
        }
        let lh = model.likelihood_pileup(&observations, AlleleFreq(0.5), Some(AlleleFreq(0.0)));
        for af in linspace(0.0, 1.0, 10) {
            if af != 0.5 {
                let l =
                    model.likelihood_pileup(&observations, AlleleFreq(af), Some(AlleleFreq(0.0)));
                assert!(lh > l);
            }
        }
    }
}