1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
//! Password hashing functionality
//!
//! While the `primitives` module handles the raw implementations of hashing
//! algorithms, this module contains the `libpasta` hashing functionality
//! itself. In particular, a `libpasta` hashing `Algorithm` is defined as a
//! recursive structure, containing either a single `Primitive`, or a
//! `Primitive` and a further layer of `Algorithm`. This is the hashing onion.

use std::cmp::Ordering;
use std::default::Default;

use config;
use primitives::Primitive;

mod de;
mod ser;

#[derive(Clone, Debug, PartialEq)]
/// `libpasta` password hashing algorithms can be nested, which is captured
/// by this recursive enum.
pub enum Algorithm {
    /// A single instance of a password-hashing primitive.
    Single(Primitive),
    /// The password-hashing algorithm is composed of nested primitives.
    Nested {
        /// The outermost layer of the algorithm is a single primitive
        outer: Primitive,
        /// The rest of the layers
        inner: Box<Algorithm>,
    },
}

#[derive(Debug)]
/// Represents the output of a password hashing algorithm.
pub struct Output {
    /// The algorithm used
    pub alg: Algorithm,
    /// The salt
    pub salt: Vec<u8>,
    /// The hash output
    pub hash: Vec<u8>,
}

impl Default for Algorithm {
    fn default() -> Self {
        config::DEFAULT_ALG.clone()
    }
}

impl Output {
    /// Verifies that the supplied password matches the hashed value.
    pub fn verify(&self, password: &str) -> bool {
        self.alg.verify(password.as_bytes(), &self.salt, &self.hash)
    }

    pub(crate) fn check_keys(&mut self, config: &config::Config) {
        self.alg.update_key(config);
    }
}

impl Algorithm {
    /// Type-safe function to compute the hash of a password.
    pub fn hash(&self, password: &str) -> Output {
        let salt = super::gen_salt(&*config::RANDOMNESS_SOURCE);
        let output = self.hash_with_salt(password.as_bytes(), &salt);
        Output {
            hash: output,
            salt,
            alg: self.clone(),
        }
    }

    /// Computes the hash output for given password and salt.
    pub fn hash_with_salt(&self, password: &[u8], salt: &[u8]) -> Vec<u8> {
        match *self {
            Algorithm::Single(ref p) => p.compute(password, salt),
            Algorithm::Nested {
                ref inner,
                ref outer,
            } => {
                let innerput = inner.hash_with_salt(password, salt);
                outer.compute(&innerput, salt)
            }
        }
    }

    /// Verifies the password, salt and hash are matching by recursively
    /// re-computing the hash and verifying the final value.
    pub fn verify(&self, password: &[u8], salt: &[u8], hash: &[u8]) -> bool {
        match *self {
            Algorithm::Single(ref p) => p.verify(password, salt, hash),
            Algorithm::Nested {
                ref inner,
                ref outer,
            } => {
                let innerput = inner.hash_with_salt(password, salt);
                outer.verify(&innerput, salt, hash)
            }
        }
    }

    /// Test whether the current 'Algorithm` is sufficiently secure.
    pub fn needs_migrating(&self, prim: &Primitive) -> bool {
        match *self {
            Algorithm::Single(ref a2) |
            // Note: here we only decide to migrate if default is not <= a2
            // This includes the case that they are incomparable
            Algorithm::Nested { outer: ref a2, .. } => {
                !matches!(a2.partial_cmp(prim), Some(Ordering::Greater) | Some(Ordering::Equal))
            }

        }
    }

    /// Copies `self` into a new `Algorithm` wrapped by `outer`
    pub fn to_wrapped(&self, outer: Primitive) -> Self {
        Algorithm::Nested {
            outer,
            inner: Box::new(self.clone()),
        }
    }

    /// Moves `self` into a new `Algorithm` wrapped by `outer`
    pub fn into_wrapped(self, outer: Primitive) -> Self {
        Algorithm::Nested {
            outer,
            inner: Box::new(self),
        }
    }

    pub(crate) fn update_key(&mut self, config: &config::Config) {
        match *self {
            Algorithm::Single(ref mut p) => {
                if let Some(newp) = p.update_key(config) {
                    *p = newp;
                }
            }
            Algorithm::Nested {
                ref mut inner,
                ref mut outer,
            } => {
                inner.update_key(config);
                // outer.update_key(config).and_then(|new_outer| *outer = new_outer);
                if let Some(newp) = outer.update_key(config) {
                    *outer = newp;
                }
            }
        }
    }
}

#[cfg(test)]
mod test {
    use super::*;
    use serde_mcf;

    #[test]
    fn test_hash() {
        let alg = Algorithm::default();
        let output = alg.hash(&"hunter2");
        println!("{:?}", serde_mcf::to_string(&output).unwrap());
    }

    #[test]
    fn test_wrapped() {
        let alg = Algorithm::default();
        let prim = &*config::DEFAULT_PRIM;
        let _alg1 = alg.to_wrapped(prim.clone());
        let _alg = alg.into_wrapped(prim.clone());
    }
}