1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
// Copyright 2020 Netwarps Ltd.
//
// Permission is hereby granted, free of charge, to any person obtaining a
// copy of this software and associated documentation files (the "Software"),
// to deal in the Software without restriction, including without limitation
// the rights to use, copy, modify, merge, publish, distribute, sublicense,
// and/or sell copies of the Software, and to permit persons to whom the
// Software is furnished to do so, subject to the following conditions:
//
// The above copyright notice and this permission notice shall be included in
// all copies or substantial portions of the Software.
//
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
// OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
// AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
// FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
// DEALINGS IN THE SOFTWARE.

mod copy;

use std::io;
use std::io::ErrorKind;

use async_trait::async_trait;
use futures::io::{ReadHalf, WriteHalf};
use futures::prelude::*;
use futures::{AsyncReadExt, AsyncWriteExt};

pub use copy::copy;

/// Read Trait for async/await
///
#[async_trait]
pub trait ReadEx: Send {
    /// Reads some bytes from the byte stream.
    ///
    /// On success, returns the total number of bytes read.
    ///
    /// If the return value is `Ok(n)`, then it must be guaranteed that
    /// `0 <= n <= buf.len()`. A nonzero `n` value indicates that the buffer has been
    /// filled with `n` bytes of data. If `n` is `0`, then it can indicate one of two
    /// scenarios:
    ///
    /// 1. This reader has reached its "end of file" and will likely no longer be able to
    ///    produce bytes. Note that this does not mean that the reader will always no
    ///    longer be able to produce bytes.
    /// 2. The buffer specified was 0 bytes in length.
    ///
    /// Attempt to read bytes from underlying stream object.
    ///
    /// On success, returns `Ok(n)`.
    /// Otherwise, returns `Err(io:Error)`
    async fn read2(&mut self, buf: &mut [u8]) -> Result<usize, io::Error>;

    /// Reads the exact number of bytes requested.
    ///
    /// On success, returns `Ok(())`.
    /// Otherwise, returns `Err(io:Error)`.
    async fn read_exact2<'a>(&'a mut self, buf: &'a mut [u8]) -> Result<(), io::Error> {
        let mut buf_piece = buf;
        while !buf_piece.is_empty() {
            let n = self.read2(buf_piece).await?;
            if n == 0 {
                return Err(ErrorKind::UnexpectedEof.into());
            }

            let (_, rest) = buf_piece.split_at_mut(n);
            buf_piece = rest;
        }
        Ok(())
    }

    /// Reads a fixed-length integer from the underlying IO.
    ///
    /// On success, return `Ok(n)`.
    /// Otherwise, returns `Err(io:Error)`.
    async fn read_fixed_u32(&mut self) -> Result<usize, io::Error> {
        let mut len = [0; 4];
        self.read_exact2(&mut len).await?;
        let n = u32::from_be_bytes(len) as usize;

        Ok(n)
    }

    /// Reads a variable-length integer from the underlying IO.
    ///
    /// As a special exception, if the `IO` is empty and EOFs right at the beginning, then we
    /// return `Ok(0)`.
    ///
    /// On success, return `Ok(n)`.
    /// Otherwise, returns `Err(io:Error)`.
    ///
    /// > **Note**: This function reads bytes one by one from the underlying IO. It is therefore encouraged
    /// >           to use some sort of buffering mechanism.
    async fn read_varint(&mut self) -> Result<usize, io::Error> {
        let mut buffer = unsigned_varint::encode::usize_buffer();
        let mut buffer_len = 0;

        loop {
            match self.read2(&mut buffer[buffer_len..=buffer_len]).await? {
                0 => {
                    // Reaching EOF before finishing to read the length is an error, unless the EOF is
                    // at the very beginning of the substream, in which case we assume that the data is
                    // empty.
                    if buffer_len == 0 {
                        return Ok(0);
                    } else {
                        return Err(io::ErrorKind::UnexpectedEof.into());
                    }
                }
                n => debug_assert_eq!(n, 1),
            }

            buffer_len += 1;

            match unsigned_varint::decode::usize(&buffer[..buffer_len]) {
                Ok((len, _)) => return Ok(len),
                Err(unsigned_varint::decode::Error::Overflow) => {
                    return Err(io::Error::new(io::ErrorKind::InvalidData, "overflow in variable-length integer"));
                }
                // TODO: why do we have a `__Nonexhaustive` variant in the error? I don't know how to process it
                // Err(unsigned_varint::decode::Error::Insufficient) => {}
                Err(_) => {}
            }
        }
    }

    /// Reads a fixed length-prefixed message from the underlying IO.
    ///
    /// The `max_size` parameter is the maximum size in bytes of the message that we accept. This is
    /// necessary in order to avoid DoS attacks where the remote sends us a message of several
    /// gigabytes.
    ///
    /// > **Note**: Assumes that a fixed-length prefix indicates the length of the message. This is
    /// >           compatible with what `write_one_fixed` does.
    async fn read_one_fixed(&mut self, max_size: usize) -> Result<Vec<u8>, io::Error> {
        let len = self.read_fixed_u32().await?;
        if len > max_size {
            return Err(io::Error::new(
                io::ErrorKind::InvalidData,
                format!("Received data size over maximum frame length: {}>{}", len, max_size),
            ));
        }

        let mut buf = vec![0; len];
        self.read_exact2(&mut buf).await?;
        Ok(buf)
    }

    /// Reads a variable length-prefixed message from the underlying IO.
    ///
    /// The `max_size` parameter is the maximum size in bytes of the message that we accept. This is
    /// necessary in order to avoid DoS attacks where the remote sends us a message of several
    /// gigabytes.
    ///
    /// On success, returns `Ok(Vec<u8>)`.
    /// Otherwise, returns `Err(io:Error)`.
    ///
    /// > **Note**: Assumes that a variable-length prefix indicates the length of the message. This is
    /// >           compatible with what `write_one` does.
    async fn read_one(&mut self, max_size: usize) -> Result<Vec<u8>, io::Error> {
        let len = self.read_varint().await?;
        if len > max_size {
            return Err(io::Error::new(
                io::ErrorKind::InvalidData,
                format!("Received data size over maximum frame length: {}>{}", len, max_size),
            ));
        }

        let mut buf = vec![0; len];
        self.read_exact2(&mut buf).await?;
        Ok(buf)
    }
}

/// Write Trait for async/await
///
#[async_trait]
pub trait WriteEx: Send {
    /// Attempt to write bytes from `buf` into the object.
    ///
    /// On success, returns `Ok(num_bytes_written)`.
    /// Otherwise, returns `Err(io:Error)`
    async fn write2(&mut self, buf: &[u8]) -> Result<usize, io::Error>;
    /// Attempt to write the entire contents of data into object.
    ///
    /// The operation will not complete until all the data has been written.
    ///
    /// On success, returns `Ok(())`.
    /// Otherwise, returns `Err(io:Error)`
    async fn write_all2(&mut self, buf: &[u8]) -> Result<(), io::Error> {
        let mut buf_piece = buf;
        while !buf_piece.is_empty() {
            let n = self.write2(buf_piece).await?;
            if n == 0 {
                return Err(io::ErrorKind::WriteZero.into());
            }

            let (_, rest) = buf_piece.split_at(n);
            buf_piece = rest;
        }
        Ok(())
    }

    /// Writes a variable-length integer to the underlying IO.
    ///
    /// On success, returns `Ok(())`.
    /// Otherwise, returns `Err(io:Error)`
    ///
    /// > **Note**: Does **NOT** flush the IO.
    async fn write_varint(&mut self, len: usize) -> Result<(), io::Error> {
        let mut len_data = unsigned_varint::encode::usize_buffer();
        let encoded_len = unsigned_varint::encode::usize(len, &mut len_data).len();
        self.write_all2(&len_data[..encoded_len]).await?;
        Ok(())
    }

    /// Writes a fixed-length integer to the underlying IO.
    ///
    /// On success, returns `Ok(())`.
    /// Otherwise, returns `Err(io:Error)`
    ///
    /// > **Note**: Does **NOT** flush the IO.
    async fn write_fixed_u32(&mut self, len: usize) -> Result<(), io::Error> {
        self.write_all2((len as u32).to_be_bytes().as_ref()).await?;
        Ok(())
    }

    /// Send a fixed length message to the underlying IO, then flushes the writing side.
    ///
    /// > **Note**: Prepends a fixed-length prefix indicate the length of the message. This is
    /// >           compatible with what `read_one_fixed` expects.
    async fn write_one_fixed(&mut self, buf: &[u8]) -> Result<(), io::Error> {
        self.write_fixed_u32(buf.len()).await?;
        self.write_all2(buf).await?;
        self.flush2().await?;
        Ok(())
    }

    /// Send a variable length message to the underlying IO, then flushes the writing side.
    ///
    /// On success, returns `Ok(())`.
    /// Otherwise, returns `Err(io:Error)`
    ///
    /// > **Note**: Prepends a variable-length prefix indicate the length of the message. This is
    /// >           compatible with what `read_one` expects.
    async fn write_one(&mut self, buf: &[u8]) -> Result<(), io::Error> {
        self.write_varint(buf.len()).await?;
        self.write_all2(buf).await?;
        self.flush2().await?;
        Ok(())
    }

    /// Attempt to flush the object, ensuring that any buffered data reach
    /// their destination.
    ///
    /// On success, returns `Ok(())`.
    /// Otherwise, returns `Err(io:Error)`
    async fn flush2(&mut self) -> Result<(), io::Error>;

    /// Attempt to close the object.
    ///
    /// On success, returns `Ok(())`.
    /// Otherwise, returns `Err(io:Error)`
    async fn close2(&mut self) -> Result<(), io::Error>;
}

#[async_trait]
impl<T: AsyncRead + Unpin + Send> ReadEx for T {
    async fn read2(&mut self, buf: &mut [u8]) -> Result<usize, io::Error> {
        let n = AsyncReadExt::read(self, buf).await?;
        Ok(n)
    }
}

#[async_trait]
impl<T: AsyncWrite + Unpin + Send> WriteEx for T {
    async fn write2(&mut self, buf: &[u8]) -> Result<usize, io::Error> {
        AsyncWriteExt::write(self, buf).await
    }

    async fn flush2(&mut self) -> Result<(), io::Error> {
        AsyncWriteExt::flush(self).await
    }

    async fn close2(&mut self) -> Result<(), io::Error> {
        AsyncWriteExt::close(self).await
    }
}

///
/// SplitEx Trait for read and write separation
///
pub trait SplitEx {
    /// read half
    type Reader: ReadEx + Unpin;
    /// write half
    type Writer: WriteEx + Unpin;

    /// split Self to independent reader and writer
    fn split(self) -> (Self::Reader, Self::Writer);
}

// a common way to support SplitEx for T, requires T: AsyncRead+AsyncWrite
impl<T: AsyncRead + AsyncWrite + Send + Unpin> SplitEx for T {
    type Reader = ReadHalf<T>;
    type Writer = WriteHalf<T>;

    fn split(self) -> (Self::Reader, Self::Writer) {
        futures::AsyncReadExt::split(self)
    }
}

// the other way around to implement SplitEx for T, requires T supports Clone
// which async-std::TcpStream does
/*
impl<T: ReadEx + WriteEx + Unpin + Clone> SplitEx for T {
    type Reader = T;
    type Writer = T;

    fn split(self) -> (Self::Reader, Self::Writer) {
        let r = self.clone();
        let w = self;
        (r, w)
    }
}
*/

/// SplittableReadWrite trait for simplifying generic type constraints
pub trait SplittableReadWrite: ReadEx + WriteEx + SplitEx + Unpin + 'static {}

impl<T: ReadEx + WriteEx + SplitEx + Unpin + 'static> SplittableReadWrite for T {}

#[cfg(test)]
mod tests {
    use super::*;
    use futures::io::{self, AsyncReadExt, Cursor};

    struct Test(Cursor<Vec<u8>>);

    #[async_trait]
    impl ReadEx for Test {
        async fn read2(&mut self, buf: &mut [u8]) -> Result<usize, io::Error> {
            self.0.read(buf).await
        }
    }

    #[async_trait]
    impl WriteEx for Test {
        async fn write2(&mut self, buf: &[u8]) -> Result<usize, io::Error> {
            self.0.write(buf).await
        }

        async fn flush2(&mut self) -> Result<(), io::Error> {
            self.0.flush().await
        }

        async fn close2(&mut self) -> Result<(), io::Error> {
            self.0.close().await
        }
    }

    /// Read Vec<u8>
    #[test]
    fn test_read() {
        async_std::task::block_on(async {
            let mut reader = Test(Cursor::new(vec![1, 2, 3, 4]));
            let mut output = [0u8; 3];
            let bytes = reader.read2(&mut output[..]).await.unwrap();

            assert_eq!(bytes, 3);
            assert_eq!(output, [1, 2, 3]);
        });
    }

    // Read string
    #[test]
    fn test_read_string() {
        async_std::task::block_on(async {
            let mut reader = Test(Cursor::new(b"hello world".to_vec()));
            let mut output = [0u8; 3];
            let bytes = reader.read2(&mut output[..]).await.unwrap();

            assert_eq!(bytes, 3);
            assert_eq!(output, [104, 101, 108]);
        });
    }

    #[test]
    fn test_read_exact() {
        async_std::task::block_on(async {
            let mut reader = Test(Cursor::new(vec![1, 2, 3, 4]));
            let mut output = [0u8; 3];
            let _bytes = reader.read_exact2(&mut output[..]).await;

            assert_eq!(output, [1, 2, 3]);
        });
    }

    #[test]
    fn test_read_fixed_u32() {
        async_std::task::block_on(async {
            let mut reader = Test(Cursor::new(b"hello world".to_vec()));
            let size = reader.read_fixed_u32().await.unwrap();

            assert_eq!(size, 1751477356);
        });
    }

    #[test]
    fn test_read_varint() {
        async_std::task::block_on(async {
            let mut reader = Test(Cursor::new(vec![1, 2, 3, 4, 5, 6]));
            let size = reader.read_varint().await.unwrap();

            assert_eq!(size, 1);
        });
    }

    #[test]
    fn test_read_one() {
        async_std::task::block_on(async {
            let mut reader = Test(Cursor::new(vec![11, 104, 101, 108, 108, 111, 32, 119, 111, 114, 108, 100]));
            let output = match reader.read_one(11).await {
                Ok(v) => v,
                _ => Vec::new(),
            };

            assert_eq!(output, b"hello world");
        });
    }

    #[test]
    fn test_write() {
        async_std::task::block_on(async {
            let mut writer = Test(Cursor::new(vec![0u8; 5]));
            let size = writer.write2(&[1, 2, 3, 4]).await.unwrap();

            assert_eq!(size, 4);
            assert_eq!(writer.0.get_mut(), &[1, 2, 3, 4, 0])
        });
    }

    #[test]
    fn test_write_all2() {
        async_std::task::block_on(async {
            let mut writer = Test(Cursor::new(vec![0u8; 4]));
            let output = vec![1, 2, 3, 4, 5];
            let _bytes = writer.write_all2(&output[..]).await.unwrap();

            assert_eq!(writer.0.get_mut(), &[1, 2, 3, 4, 5]);
        });
    }

    #[test]
    fn test_write_fixed_u32() {
        async_std::task::block_on(async {
            let mut writer = Test(Cursor::new(b"hello world".to_vec()));
            let _result = writer.write_fixed_u32(1751477356).await.unwrap();

            // Binary value of `hell` is 17751477356, if write successfully, current
            // pointer ought to stay on 4
            assert_eq!(writer.0.position(), 4);
        });
    }

    #[test]
    fn test_write_varint() {
        async_std::task::block_on(async {
            let mut writer = Test(Cursor::new(vec![2, 2, 3, 4, 5, 6]));
            let _result = writer.write_varint(1).await.unwrap();

            assert_eq!(writer.0.position(), 1);
        });
    }

    #[test]
    fn test_write_one() {
        async_std::task::block_on(async {
            let mut writer = Test(Cursor::new(vec![0u8; 0]));
            let _result = writer.write_one("hello world".as_ref()).await;
            assert_eq!(writer.0.get_mut(), &[11, 104, 101, 108, 108, 111, 32, 119, 111, 114, 108, 100]);
        });
    }
}