1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
// Copyright 2018 Parity Technologies (UK) Ltd.
// Copyright 2020 Netwarps Ltd.
//
// Permission is hereby granted, free of charge, to any person obtaining a
// copy of this software and associated documentation files (the "Software"),
// to deal in the Software without restriction, including without limitation
// the rights to use, copy, modify, merge, publish, distribute, sublicense,
// and/or sell copies of the Software, and to permit persons to whom the
// Software is furnished to do so, subject to the following conditions:
//
// The above copyright notice and this permission notice shall be included in
// all copies or substantial portions of the Software.
//
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
// OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
// AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
// FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
// DEALINGS IN THE SOFTWARE.

use async_trait::async_trait;
use fnv::FnvHashMap;
use futures::{channel::mpsc, prelude::*, task::Context, task::Poll};
use futures::{SinkExt, StreamExt};
use pin_project::pin_project;
use std::{collections::hash_map::Entry, fmt, io, num::NonZeroU64, pin::Pin};

use lazy_static::lazy_static;
use libp2prs_multiaddr::{protocol, protocol::Protocol, Multiaddr};
use parking_lot::Mutex;
use rw_stream_sink::RwStreamSink;

use crate::muxing::{IReadWrite, ReadWriteEx, StreamInfo};
use crate::transport::{ConnectionInfo, IListener, ITransport, ListenerEvent, TransportListener};
use crate::{transport::TransportError, Transport};
// use libp2prs_traits::SplitEx;
// use futures::io::{ReadHalf, WriteHalf};

lazy_static! {
    static ref HUB: Mutex<FnvHashMap<NonZeroU64, mpsc::Sender<Channel>>> = Mutex::new(FnvHashMap::default());
}

/// Transport that supports `/memory/N` multiaddresses.
///
/// MemoryTransport is mainly for test purpose, used to write test code for basic transport functionality.
#[derive(Debug, Clone, Default)]
pub struct MemoryTransport;

#[async_trait]
impl Transport for MemoryTransport {
    type Output = Channel;

    fn listen_on(&mut self, addr: Multiaddr) -> Result<IListener<Self::Output>, TransportError> {
        let port = if let Ok(port) = parse_memory_addr(&addr) {
            port
        } else {
            return Err(TransportError::MultiaddrNotSupported(addr));
        };

        let mut hub = (&*HUB).lock();

        let port = if let Some(port) = NonZeroU64::new(port) {
            port
        } else {
            loop {
                let port = match NonZeroU64::new(rand::random()) {
                    Some(p) => p,
                    None => continue,
                };
                if !hub.contains_key(&port) {
                    break port;
                }
            }
        };

        let (tx, rx) = mpsc::channel(2);
        match hub.entry(port) {
            Entry::Occupied(_) => return Err(TransportError::Unreachable),
            Entry::Vacant(e) => e.insert(tx),
        };

        let listener = Box::new(Listener {
            port,
            addr: Protocol::Memory(port.get()).into(),
            receiver: rx,
        });

        Ok(listener)
    }

    async fn dial(&mut self, addr: Multiaddr) -> Result<Self::Output, TransportError> {
        let port = if let Ok(port) = parse_memory_addr(&addr) {
            if let Some(port) = NonZeroU64::new(port) {
                port
            } else {
                return Err(TransportError::Unreachable);
            }
        } else {
            return Err(TransportError::MultiaddrNotSupported(addr));
        };

        // get a cloned sender, unlock the HUB asap
        let mut sender = {
            let hub = HUB.lock();
            if let Some(sender) = hub.get(&port) {
                sender.clone()
            } else {
                return Err(TransportError::Unreachable);
            }
        };

        let (a_tx, a_rx) = mpsc::channel(4096);
        let (b_tx, b_rx) = mpsc::channel(4096);

        let la = Multiaddr::empty();
        let ra = addr;

        let channel_to_send = Channel {
            io: RwStreamSink::new(Chan {
                incoming: a_rx,
                outgoing: b_tx,
            }),
            la: la.clone(),
            ra: ra.clone(),
        };
        let channel_to_return = Channel {
            io: RwStreamSink::new(Chan {
                incoming: b_rx,
                outgoing: a_tx,
            }),
            la: la.clone(),
            ra: ra.clone(),
        };
        sender.send(channel_to_send).await.map_err(|_| TransportError::Unreachable)?;
        Ok(channel_to_return)
    }

    fn box_clone(&self) -> ITransport<Self::Output> {
        Box::new(self.clone())
    }

    fn protocols(&self) -> Vec<u32> {
        vec![protocol::MEMORY]
    }
}

/// Listener for memory connections.
pub struct Listener {
    /// Port we're listening on.
    port: NonZeroU64,
    /// The address we are listening on.
    addr: Multiaddr,
    /// Receives incoming connections.
    receiver: mpsc::Receiver<Channel>,
}

#[async_trait]
impl TransportListener for Listener {
    type Output = Channel;

    async fn accept(&mut self) -> Result<ListenerEvent<Self::Output>, TransportError> {
        self.receiver
            .next()
            .await
            .map(ListenerEvent::Accepted)
            .ok_or(TransportError::Unreachable)
    }

    fn multi_addr(&self) -> Option<&Multiaddr> {
        Some(&self.addr)
    }
}

impl Drop for Listener {
    fn drop(&mut self) {
        let val_in = HUB.lock().remove(&self.port);
        debug_assert!(val_in.is_some());
    }
}

/// If the address is `/memory/n`, returns the value of `n`.
fn parse_memory_addr(a: &Multiaddr) -> Result<u64, ()> {
    let mut iter = a.iter();

    let port = if let Some(Protocol::Memory(port)) = iter.next() {
        port
    } else {
        return Err(());
    };

    if iter.next().is_some() {
        return Err(());
    }

    Ok(port)
}

/// A channel represents an established, in-memory, logical connection between two endpoints.
///
/// Implements `ReadEx` and `WriteEx`.
#[pin_project]
pub struct Channel {
    #[pin]
    io: RwStreamSink<Chan<Vec<u8>>>,
    la: Multiaddr,
    ra: Multiaddr,
}

impl fmt::Debug for Channel {
    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
        f.debug_struct("Channel").field("la", &self.la).field("ra", &self.ra).finish()
    }
}

// Implements AsyncRead & AsyncWrite
impl AsyncRead for Channel {
    fn poll_read(self: Pin<&mut Self>, cx: &mut Context<'_>, buf: &mut [u8]) -> Poll<io::Result<usize>> {
        let this = self.project();
        this.io.poll_read(cx, buf)
    }
}
impl AsyncWrite for Channel {
    fn poll_write(self: Pin<&mut Self>, cx: &mut Context<'_>, buf: &[u8]) -> Poll<io::Result<usize>> {
        let this = self.project();
        this.io.poll_write(cx, buf)
    }

    fn poll_flush(self: Pin<&mut Self>, cx: &mut Context<'_>) -> Poll<io::Result<()>> {
        let this = self.project();
        this.io.poll_flush(cx)
    }

    fn poll_close(self: Pin<&mut Self>, cx: &mut Context<'_>) -> Poll<io::Result<()>> {
        let this = self.project();
        this.io.poll_close(cx)
    }
}

/// A channel represents an established, in-memory, logical connection between two endpoints.
///
/// Implements `Sink` and `Stream`.
pub struct Chan<T = Vec<u8>> {
    incoming: mpsc::Receiver<T>,
    outgoing: mpsc::Sender<T>,
}

impl<T> Unpin for Chan<T> {}

impl<T> Stream for Chan<T> {
    type Item = Result<T, io::Error>;

    fn poll_next(mut self: Pin<&mut Self>, cx: &mut Context) -> Poll<Option<Self::Item>> {
        match Stream::poll_next(Pin::new(&mut self.incoming), cx) {
            Poll::Pending => Poll::Pending,
            Poll::Ready(None) => Poll::Ready(Some(Err(io::ErrorKind::BrokenPipe.into()))),
            Poll::Ready(Some(v)) => Poll::Ready(Some(Ok(v))),
        }
    }
}

impl<T> Sink<T> for Chan<T> {
    type Error = io::Error;

    fn poll_ready(mut self: Pin<&mut Self>, cx: &mut Context) -> Poll<Result<(), Self::Error>> {
        self.outgoing
            .poll_ready(cx)
            .map(|v| v.map_err(|_| io::ErrorKind::BrokenPipe.into()))
    }

    fn start_send(mut self: Pin<&mut Self>, item: T) -> Result<(), Self::Error> {
        self.outgoing.start_send(item).map_err(|_| io::ErrorKind::BrokenPipe.into())
    }

    fn poll_flush(self: Pin<&mut Self>, _: &mut Context) -> Poll<Result<(), Self::Error>> {
        Poll::Ready(Ok(()))
    }

    fn poll_close(self: Pin<&mut Self>, _: &mut Context) -> Poll<Result<(), Self::Error>> {
        Poll::Ready(Ok(()))
    }
}

impl ConnectionInfo for Channel {
    fn local_multiaddr(&self) -> Multiaddr {
        self.la.clone()
    }

    fn remote_multiaddr(&self) -> Multiaddr {
        self.ra.clone()
    }
}

impl StreamInfo for Channel {
    fn id(&self) -> usize {
        0
    }
}

impl ReadWriteEx for Channel {
    fn box_clone(&self) -> IReadWrite {
        unimplemented!()
    }
}

#[cfg(test)]
mod tests {
    use super::*;
    use libp2prs_traits::{ReadEx as _ReadEx, WriteEx as _WriteEx};

    #[test]
    fn parse_memory_addr_works() {
        assert_eq!(parse_memory_addr(&"/memory/5".parse().unwrap()), Ok(5));
        assert_eq!(parse_memory_addr(&"/tcp/150".parse().unwrap()), Err(()));
        assert_eq!(parse_memory_addr(&"/memory/0".parse().unwrap()), Ok(0));
        assert_eq!(parse_memory_addr(&"/memory/5/tcp/150".parse().unwrap()), Err(()));
        assert_eq!(parse_memory_addr(&"/tcp/150/memory/5".parse().unwrap()), Err(()));
        assert_eq!(parse_memory_addr(&"/memory/1234567890".parse().unwrap()), Ok(1_234_567_890));
    }

    #[test]
    fn listening_twice() {
        let mut transport = MemoryTransport::default();
        assert!(transport.listen_on("/memory/1639174018481".parse().unwrap()).is_ok());
        assert!(transport.listen_on("/memory/1639174018481".parse().unwrap()).is_ok());
        let _listener = transport.listen_on("/memory/1639174018481".parse().unwrap()).unwrap();
        assert!(transport.listen_on("/memory/1639174018481".parse().unwrap()).is_err());
        assert!(transport.listen_on("/memory/1639174018481".parse().unwrap()).is_err());
        drop(_listener);
        assert!(transport.listen_on("/memory/1639174018481".parse().unwrap()).is_ok());
        assert!(transport.listen_on("/memory/1639174018481".parse().unwrap()).is_ok());
    }

    #[test]
    fn port_not_in_use() {
        futures::executor::block_on(async move {
            let mut transport = MemoryTransport::default();
            assert!(transport.dial("/memory/810172461024613".parse().unwrap()).await.is_err());
            let _listener = transport.listen_on("/memory/810172461024613".parse().unwrap()).unwrap();
            assert!(transport.dial("/memory/810172461024613".parse().unwrap()).await.is_ok());
        });
    }

    #[test]
    fn communicating_between_dialer_and_listener() {
        let msg = [1, 2, 3];

        // Setup listener.

        let rand_port = rand::random::<u64>().saturating_add(1);
        let t1_addr: Multiaddr = format!("/memory/{}", rand_port).parse().unwrap();
        let cloned_t1_addr = t1_addr.clone();

        let mut t1 = MemoryTransport::default();

        let listener = async move {
            let mut listener = t1.listen_on(t1_addr.clone()).unwrap();
            let mut socket = match listener.accept().await.unwrap() {
                ListenerEvent::Accepted(socket) => socket,
                _ => panic!("unreachable"),
            };

            let mut buf = [0; 3];
            socket.read_exact2(&mut buf).await.unwrap();

            assert_eq!(buf, msg);
        };

        // Setup dialer.

        let mut t2 = MemoryTransport::default();
        let dialer = async move {
            let mut socket = t2.dial(cloned_t1_addr).await.unwrap();
            socket.write_all2(&msg).await.unwrap();
        };

        // Wait for both to finish.

        futures::executor::block_on(futures::future::join(listener, dialer));
    }
}