1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
// Copyright 2014 The Rust Project Developers.
// Copyright 2017 Seiichi Uchida <uchida@os.ecc.u-tokyo.ac.jp>

use std::cell::UnsafeCell;
use std::fmt;
use std::marker;
use std::mem;
use std::ops::{Deref, DerefMut};
use std::ptr;
use std::sync::atomic::{AtomicBool, AtomicPtr};
use std::sync::atomic::Ordering::{Acquire, Release, Relaxed};
use std::sync::{LockResult, TryLockError, TryLockResult};

use poison;

/// A queue node which represents a waiting thread in MCS lock algorithm.
struct Node {
    next: AtomicPtr<Node>,
    waiting: AtomicBool,
}

impl Node {
    pub fn new() -> Node {
        Node{
            next: AtomicPtr::new(ptr::null_mut()),
            waiting: AtomicBool::new(true),
        }
    }
}

/// A mutual exclusion primitive useful for protecting shared data
///
/// This mutex is based on the MCS lock algorithm.
///
/// # Examples
///
/// ```
/// extern crate libmcs;
///
/// use std::sync::Arc;
/// use std::thread;
/// use std::sync::mpsc::channel;
///
/// use libmcs::Mutex;
///
/// const N: usize = 10;
///
/// // Spawn a few threads to increment a shared variable (non-atomically), and
/// // let the main thread know once all increments are done.
/// //
/// // Here we're using an Arc to share memory among threads, and the data inside
/// // the Arc is protected with a mutex.
/// let data = Arc::new(Mutex::new(0));
///
/// let (tx, rx) = channel();
/// for _ in 0..10 {
///     let (data, tx) = (data.clone(), tx.clone());
///     thread::spawn(move || {
///         // The shared state can only be accessed once the mutex is held.
///         // Our non-atomic increment is safe because we're the only thread
///         // which can access the shared state when the mutex is held.
///         //
///         // We unwrap() the return value to assert that we are not expecting
///         // threads to ever fail while holding the mutex.
///         let mut data = data.lock().unwrap();
///         *data += 1;
///         if *data == N {
///             tx.send(()).unwrap();
///         }
///         // the mutex is unlocked here when `data` goes out of scope.
///     });
/// }
///
/// rx.recv().unwrap();
/// ```
///
/// To recover from a poisoned mutex:
///
/// ```
/// extern crate libmcs;
/// use std::sync::{Arc, Mutex};
/// use std::thread;
///
/// use libmcs::Mutex;
///
/// let mtx = Arc::new(Mutex::new(0_u32));
/// let mtx2 = mtx.clone();
///
/// let _ = thread::spawn(move || -> () {
///     // This thread will acquire the mutex first, unwrapping the result of
///     // `lock()` because the mutex has not been poisoned.
///     let _guard = mtx2.lock().unwrap();
///
///     // This panic while holding the mutex (`_guard` is in scope) will poison
///     // it.
///     panic!();
/// }).join();
///
/// // The mutex is poisoned by this point, but the returned result can be
/// // pattern matched on to return the underlying guard on both branches.
/// let mut guard = match mtx.lock() {
///     Ok(guard) => guard,
///     Err(poisoned) => poisoned.into_inner(),
/// };
///
/// *guard += 1;
/// ```
pub struct Mutex<T: ?Sized> {
    tail: AtomicPtr<Node>,
    poison: poison::Flag,
    data: UnsafeCell<T>,
}

unsafe impl<T: ?Sized + Send> Send for Mutex<T> { }
unsafe impl<T: ?Sized + Send> Sync for Mutex<T> { }

/// An RAII implementation of a scoped locking. When this structure is
/// dropped (falls out of scope), the mutex will be unlocked.
///
/// The data protected by the mutex can be access through this guard via its
/// [`Deref`] and [`DerefMut`] implementations.
///
/// This structure is created by the [`lock()`] and [`try_lock()`] methods on
/// [`Mutex`].
pub struct MutexGuard<'a, T: ?Sized + 'a> {
    __mtx: &'a Mutex<T>,
    __node: AtomicPtr<Node>,
    __poison: poison::Guard,
}

impl<'a, T: ?Sized> !marker::Send for MutexGuard<'a, T> { }

impl<T> Mutex<T> {
    /// Creates a new mutex in an unlocked state ready for use.
    ///
    /// # Examples
    ///
    /// ```
    /// use std::sync::Mutex;
    ///
    /// let mutex = Mutex::new(0);
    /// ```
    pub fn new(t: T) -> Mutex<T> {
        Mutex {
            tail: AtomicPtr::new(ptr::null_mut()),
            poison: poison::Flag::new(),
            data: UnsafeCell::new(t),
        }
    }
}

impl<T: ?Sized> Mutex<T> {
    /// Acquires the mutex, blocking the current thread until it is able to do so.
    pub fn lock(&self) -> LockResult<MutexGuard<T>> {
        unsafe {
            let node = Box::into_raw(Box::new(Node::new()));
            let prev = self.tail.swap(node, Acquire);
            if !prev.is_null() {
                (*prev).next.store(node, Relaxed);
                while (*node).waiting.load(Acquire) {}
            }

            MutexGuard::new(self, AtomicPtr::new(node))
        }
    }

    /// Attempts to acquire the mutex.
    pub fn try_lock(&self) -> TryLockResult<MutexGuard<T>> {
        unsafe {
            let node = Box::into_raw(Box::new(Node::new()));
            let prev = self.tail.load(Acquire);
            if prev.is_null() {
                let prev_tail = self.tail.compare_and_swap(prev, node, Acquire);
                if prev_tail.is_null() {
                    return Ok(MutexGuard::new(self, AtomicPtr::new(node))?)
                }
            }

            Err(TryLockError::WouldBlock)
        }
    }

    /// Determines whether the mutex is poisoned.
    pub fn is_poisoned(&self) -> bool {
        self.poison.get()
    }

    /// Consumes this mutex, returning the underlying data.
    pub fn into_inner(self) -> LockResult<T> where T: Sized {
        // We know statically that there are no outstanding references to
        // `self` so there's no need to acquire the mutex. Moreover, in MCS lock
        // `self.tail` points to a null pointer if the mutex is not acquired.
        // Therefore, we do not need to explicitly clean up the memory
        // for the queue node.
        //
        // To get the inner value, we'd like to call `data.into_inner()`,
        // but because `Mutex` impl-s `Drop`, we can't move out of it, so
        // we'll have to destructure it manually instead.
        unsafe {
            let (poison, data) = {
                let ref poison = self.poison;
                let ref data = self.data;
                (ptr::read(poison), ptr::read(data))
            };
            mem::forget(self);

            poison::map_result(poison.borrow(), |_| data.into_inner())
        }
    }

    /// Returns a mutable reference to the underlying data.
    ///
    /// Since this call borrows the `Mutex` mutably, no actual locking needs to
    /// take place---the mutable borrow statically guarantees the mutex is not
    /// acquired.
    pub fn get_mut(&mut self) -> LockResult<&mut T> {
        let data = unsafe { &mut *self.data.get() };
        poison::map_result(self.poison.borrow(), |_| data)
    }
}

impl<T: ?Sized> Drop for Mutex<T> {
    // Nothing to do since if the mutex is not acquired `self.tail`
    // points to a null pointer.
    fn drop(&mut self) { }
}

impl<T: ?Sized + Default> Default for Mutex<T> {
    /// Creates a `Mutex<T>`, with the `Default` value for T.
    fn default() -> Mutex<T> {
        Mutex::new(Default::default())
    }
}

impl<T: ?Sized + fmt::Debug> fmt::Debug for Mutex<T> {
    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
        match self.try_lock() {
            Ok(guard) => write!(f, "Mutex {{ datea: {:?} }}", &*guard),
            Err(TryLockError::Poisoned(err)) => {
                write!(f, "Mutex {{ data: Poisoned({:?}) }}", &**err.get_ref())
            },
            Err(TryLockError::WouldBlock) => write!(f, "Mutex {{ <locked> }}")
        }
    }
}

impl<'mutex, T: ?Sized> MutexGuard<'mutex, T> {
    unsafe fn new(lock: &'mutex Mutex<T>, node: AtomicPtr<Node>) -> LockResult<MutexGuard<'mutex, T>> {
        poison::map_result(lock.poison.borrow(), |guard| {
            MutexGuard {
                __mtx: lock,
                __node: node,
                __poison: guard,
            }
        })
    }
}

impl<'mutex, T: ?Sized> Deref for MutexGuard<'mutex, T> {
    type Target = T;

    fn deref(&self) -> &T {
        unsafe { &*self.__mtx.data.get() }
    }
}

impl<'mutex, T: ?Sized> DerefMut for MutexGuard<'mutex, T> {
    fn deref_mut(&mut self) -> &mut T {
        unsafe { &mut *self.__mtx.data.get() }
    }
}


impl<'mutex, T: ?Sized> Drop for MutexGuard<'mutex, T> {
    fn drop(&mut self) {
        unsafe {
            self.__mtx.poison.done(&self.__poison);
            let raw_node_ptr = *self.__node.get_mut();
            let mut succ = (*raw_node_ptr).next.load(Relaxed);
            if succ.is_null() {
                if self.__mtx.tail.compare_and_swap(raw_node_ptr, ptr::null_mut(), Release) == raw_node_ptr {
                    // Destroy the node pointer handled by this MutexGuard
                    Box::from_raw(raw_node_ptr);
                    return
                }
                while succ.is_null() {
                    succ = (*raw_node_ptr).next.load(Relaxed);
                }
            }
            (*succ).waiting.store(false, Relaxed);
            Box::from_raw(raw_node_ptr);
        }
    }
}

impl<'mutex, T: ?Sized + fmt::Debug> fmt::Debug for MutexGuard<'mutex, T> {
    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
        f.debug_struct("MutexGuard")
            .field("lock", &self.__mtx)
            .finish()
    }
}

#[cfg(test)]
mod tests {
    use std::sync::{Arc};
    use std::sync::atomic::{AtomicUsize, Ordering};
    use super::Mutex;
    use std::sync::mpsc;
    use std::thread;

    #[derive(Eq, PartialEq, Debug)]
    struct NonCopy(i32);

    #[test]
    fn smoke() {
        let m = Mutex::new(());
        drop(m.lock().unwrap());
        drop(m.lock().unwrap());
    }

    #[test]
    fn lots_and_lots() {
        const J: u32 = 1000;
        const K: u32 = 3;

        let m = Arc::new(Mutex::new(0));

        fn inc(m: &Mutex<u32>) {
            for _ in 0..J {
                *m.lock().unwrap() += 1;
            }
        }

        let (tx, rx) = mpsc::channel();
        for _ in 0..K {
            let tx2 = tx.clone();
            let m2 = m.clone();
            thread::spawn(move|| { inc(&m2); tx2.send(()).unwrap(); });
            let tx2 = tx.clone();
            let m2 = m.clone();
            thread::spawn(move|| {inc(&m2); tx2.send(()).unwrap(); });
        }

        drop(tx);
        for _ in 0..2 * K {
            rx.recv().unwrap();
        }
        assert_eq!(*m.lock().unwrap(), J * K * 2);
    }

    #[test]
    fn try_lock() {
        let m = Mutex::new(());
        *m.try_lock().unwrap() = ();
    }

    #[test]
    fn test_into_inner() {
        let m = Mutex::new(NonCopy(10));
        assert_eq!(m.into_inner().unwrap(), NonCopy(10));
    }

    #[test]
    fn test_into_inner_drop() {
        struct Foo(Arc<AtomicUsize>);
        impl Drop for Foo {
            fn drop(&mut self) {
                self.0.fetch_add(1, Ordering::SeqCst);
            }
        }
        let num_drops = Arc::new(AtomicUsize::new(0));
        let m = Mutex::new(Foo(num_drops.clone()));
        assert_eq!(num_drops.load(Ordering::SeqCst), 0);
        {
            let _inner = m.into_inner().unwrap();
            assert_eq!(num_drops.load(Ordering::SeqCst), 0);
        }
        assert_eq!(num_drops.load(Ordering::SeqCst), 1);
    }

    #[test]
    fn test_into_inner_poison() {
        let m = Arc::new(Mutex::new(NonCopy(10)));
        let m2 = m.clone();
        let _ = thread::spawn(move || {
            let _lock = m2.lock().unwrap();
            panic!("test panic in inner thread to poison mutex");
        }).join();

        assert!(m.is_poisoned());
        match Arc::try_unwrap(m).unwrap().into_inner() {
            Err(e) => assert_eq!(e.into_inner(), NonCopy(10)),
            Ok(x) => panic!("into_inner of poisoned Mutex is Ok: {:?}", x),
        }
    }

    #[test]
    fn test_get_mut() {
        let mut m = Mutex::new(NonCopy(10));
        *m.get_mut().unwrap() = NonCopy(20);
        assert_eq!(m.into_inner().unwrap(), NonCopy(20));
    }

    #[test]
    fn test_get_mut_poison() {
        let m = Arc::new(Mutex::new(NonCopy(10)));
        let m2 = m.clone();
        let _ = thread::spawn(move || {
            let _lock = m2.lock().unwrap();
            panic!("test panic in inner thread to poison mutex");
        }).join();

        assert!(m.is_poisoned());
        match Arc::try_unwrap(m).unwrap().get_mut() {
            Err(e) => assert_eq!(*e.into_inner(), NonCopy(10)),
            Ok(x) => panic!("get_mut of poisoned Mutex is Ok: {:?}", x),
        }
    }


    #[test]
    fn test_mutex_arc_poison() {
        let arc = Arc::new(Mutex::new(1));
        assert!(!arc.is_poisoned());
        let arc2 = arc.clone();
        let _ = thread::spawn(move|| {
            let lock = arc2.lock().unwrap();
            assert_eq!(*lock, 2);
        }).join();
        assert!(arc.lock().is_err());
        assert!(arc.is_poisoned());
    }

    #[test]
    fn test_mutex_arc_nested() {
        // Tests nested mutexes and access
        // to underlying data.
        let arc = Arc::new(Mutex::new(1));
        let arc2 = Arc::new(Mutex::new(arc));
        let (tx, rx) = mpsc::channel();
        let _t = thread::spawn(move|| {
            let lock = arc2.lock().unwrap();
            let lock2 = lock.lock().unwrap();
            assert_eq!(*lock2, 1);
            tx.send(()).unwrap();
        });
        rx.recv().unwrap();
    }

    #[test]
    fn test_mutex_arc_access_in_unwind() {
        let arc = Arc::new(Mutex::new(1));
        let arc2 = arc.clone();
        let _ = thread::spawn(move|| -> () {
            struct Unwinder {
                i: Arc<Mutex<i32>>,
            }
            impl Drop for Unwinder {
                fn drop(&mut self) {
                    *self.i.lock().unwrap() += 1;
                }
            }
            let _u = Unwinder { i: arc2 };
            panic!();
        }).join();
        let lock = arc.lock().unwrap();
        assert_eq!(*lock, 2);
    }

    #[test]
    fn test_mutex_unsized() {
        let mutex: &Mutex<[i32]> = &Mutex::new([1, 2, 3]);
        {
            let b = &mut *mutex.lock().unwrap();
            b[0] = 4;
            b[2] = 5;
        }
        let comp: &[i32] = &[4, 2, 5];
        assert_eq!(&*mutex.lock().unwrap(), comp);
    }
}