1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
//! # liblinear
//!
//! `liblinear` is a Rust wrapper for the [LIBLINEAR](https://www.csie.ntu.edu.tw/~cjlin/liblinear/)
//! C/C++ machine learning library.

#[macro_use]
extern crate failure;

use std::ffi::CStr;
use std::ffi::CString;
use std::mem;
use std::ptr;

use failure::Error;

pub use ffi::FeatureNode;
use util::*;

mod ffi;
pub mod util;

/// Errors related to a model's parameters.
#[derive(Debug, Fail)]
pub enum ParameterError {
    /// The model's parameters are either incomplete or invalid.
    #[fail(display = "parameter error: {}", e)]
    InvalidParameters {
        #[doc(hidden)]
        e: String,
    },
}

/// Errors related to a model's input/training data.
#[derive(Debug, Fail)]
pub enum ProblemError {
    /// The model's input/training data is either incomplete or invalid.
    #[fail(display = "input data error: {}", e)]
    InvalidTrainingData {
        #[doc(hidden)]
        e: String,
    },
}

/// Errors raised by a model's API call.
#[derive(Debug, Fail)]
pub enum ModelError {
    /// The model's internal state is invalid.
    ///
    /// This can occur if the model's parameters or input data were not initialized correctly.
    #[fail(display = "invalid state: {}", e)]
    InvalidState {
        #[doc(hidden)]
        e: String,
    },
    /// The model cannot be saved to/loaded from disk.
    ///
    /// This can occur if the serialized data was not found, or if the model is in an indeterminate
    /// state after deserialization.
    #[fail(display = "serialization error: {}", e)]
    SerializationError {
        #[doc(hidden)]
        e: String,
    },
    /// The model couldn't be applied to the test/prediction data.
    #[fail(display = "prediction error: {}", e)]
    PredictionError {
        #[doc(hidden)]
        e: String,
    },
    /// The model encountered an unexpected internal error.
    #[fail(display = "unknown error: {}", e)]
    UnknownError {
        #[doc(hidden)]
        e: String,
    },
}

/// Represents a one-to-one mapping of source features to target values.
///
/// Source features are represented as sparse vectors of real numbers. Target values are
/// either integers (in classification) or real numbers (in regression).
pub trait LibLinearProblem: Clone {
    /// The feature vectors of each training instance.
    fn source_features(&self) -> &[Vec<FeatureNode>];
    /// Target labels/values of each training instance.
    fn target_values(&self) -> &[f64];
    /// Bias of the input data.
    fn bias(&self) -> f64;
}

#[doc(hidden)]
pub struct Problem {
    backing_store_labels: Vec<f64>,
    backing_store_features: Vec<Vec<FeatureNode>>,
    _backing_store_feature_ptrs: Vec<*const FeatureNode>,
    bound: ffi::Problem,
}

impl Problem {
    fn new(input_data: TrainingInput, bias: f64) -> Result<Problem, ParameterError> {
        let num_training_instances = input_data.len_data() as i32;
        let num_features = input_data.len_features() as i32;
        let has_bias = bias >= 0f64;
        let last_feature_index = input_data.last_feature_index() as i32;

        let (mut transformed_features, labels): (Vec<Vec<FeatureNode>>, Vec<f64>) =
            input_data.yield_data().iter().fold(
                (Vec::<Vec<FeatureNode>>::default(), Vec::<f64>::default()),
                |(mut feats, mut labels), instance| {
                    feats.push(
                        instance
                            .features()
                            .iter()
                            .map(|(index, value)| FeatureNode {
                                index: *index as i32,
                                value: *value,
                            })
                            .collect(),
                    );
                    labels.push(instance.label());
                    (feats, labels)
                },
            );

        // add feature nodes for non-negative biases and an extra book-end
        transformed_features = transformed_features
            .into_iter()
            .map(|mut v: Vec<FeatureNode>| {
                if has_bias {
                    v.push(FeatureNode {
                        index: last_feature_index + 1,
                        value: bias,
                    });
                }

                v.push(FeatureNode {
                    index: -1,
                    value: 0f64,
                });

                v
            })
            .collect();

        let transformed_feature_ptrs: Vec<*const FeatureNode> =
            transformed_features.iter().map(|e| e.as_ptr()).collect();

        // the pointers passed to ffi::Problem will be valid even after their corresponding Vecs
        // are moved to a different location as they point to the actual backing store on the heap
        Ok(Problem {
            bound: ffi::Problem {
                l: num_training_instances as i32,
                n: num_features + if has_bias { 1 } else { 0 } as i32,
                y: labels.as_ptr(),
                x: transformed_feature_ptrs.as_ptr(),
                bias,
            },
            backing_store_labels: labels,
            backing_store_features: transformed_features,
            _backing_store_feature_ptrs: transformed_feature_ptrs,
        })
    }
}

impl LibLinearProblem for Problem {
    fn source_features(&self) -> &[Vec<FeatureNode>] {
        &self.backing_store_features
    }

    fn target_values(&self) -> &[f64] {
        &self.backing_store_labels
    }

    fn bias(&self) -> f64 {
        self.bound.bias
    }
}

impl Clone for Problem {
    fn clone(&self) -> Self {
        let labels = self.backing_store_labels.clone();
        let transformed_features: Vec<Vec<FeatureNode>> = self.backing_store_features.clone();
        let transformed_feature_ptrs: Vec<*const FeatureNode> =
            transformed_features.iter().map(|e| e.as_ptr()).collect();

        Problem {
            bound: ffi::Problem {
                l: self.bound.l,
                n: self.bound.n,
                y: labels.as_ptr(),
                x: transformed_feature_ptrs.as_ptr(),
                bias: self.bound.bias,
            },
            backing_store_labels: labels,
            backing_store_features: transformed_features,
            _backing_store_feature_ptrs: transformed_feature_ptrs,
        }
    }
}

/// Builder for [LibLinearProblem](enum.LibLinearProblem.html).
pub struct ProblemBuilder {
    input_data: Option<TrainingInput>,
    bias: f64,
}

impl ProblemBuilder {
    fn new() -> ProblemBuilder {
        ProblemBuilder {
            input_data: None,
            bias: -1.0,
        }
    }

    /// Set input/training data.
    pub fn input_data(&mut self, input_data: TrainingInput) -> &mut Self {
        self.input_data = Some(input_data);
        self
    }
    /// Set bias. If bias is >= 0, it's appended to the feature vector for every instance.
    ///
    /// Default: -1.0
    pub fn bias(&mut self, bias: f64) -> &mut Self {
        self.bias = bias;
        self
    }
    fn build(self) -> Result<Problem, Error> {
        let input_data = self.input_data.ok_or(ProblemError::InvalidTrainingData {
            e: "Missing input/training data".to_string(),
        })?;

        Ok(Problem::new(input_data, self.bias)?)
    }
}

/// Types of generalized linear models supported by liblinear.
///
/// These combine several types of regularization schemes:
/// * L1
/// * L2
///
/// ...and loss functions:
/// * L1-loss for SVM
/// * Regular L2-loss for SVM (hinge-loss)
/// * Logistic loss for logistic regression
#[allow(non_camel_case_types)]
pub enum SolverType {
    /// L2-regularized logistic regression (primal).
    L2R_LR = 0,
    /// L2-regularized L2-loss support vector classification (dual).
    L2R_L2LOSS_SVC_DUAL = 1,
    /// L2-regularized L2-loss support vector classification (primal).
    L2R_L2LOSS_SVC = 2,
    /// L2-regularized L1-loss support vector classification (dual).
    L2R_L1LOSS_SVC_DUAL = 3,
    /// Support vector classification by Crammer and Singer.
    MCSVM_CS = 4,
    /// L1-regularized L2-loss support vector classification.
    L1R_L2LOSS_SVC = 5,
    /// L1-regularized logistic regression.
    L1R_LR = 6,
    /// L2-regularized logistic regression (dual).
    L2R_LR_DUAL = 7,
    /// L2-regularized L2-loss support vector regression (primal).
    L2R_L2LOSS_SVR = 11,
    /// L2-regularized L2-loss support vector regression (dual).
    L2R_L2LOSS_SVR_DUAL = 12,
    /// L2-regularized L1-loss support vector regression (dual).
    L2R_L1LOSS_SVR_DUAL = 13,
}

impl SolverType {
    /// Returns true if the solver is a probabilistic/logistic regression solver.
    ///
    /// Supported solvers: L2R_LR, L1R_LR, L2R_LR_DUAL.
    pub fn is_logistic_regression(&self) -> bool {
        match self {
            SolverType::L2R_LR | SolverType::L1R_LR | SolverType::L2R_LR_DUAL => true,
            _ => false,
        }
    }
    /// Returns true if the solver is a support vector regression solver.
    ///
    /// Supported solvers: L2R_L2LOSS_SVR, L2R_L2LOSS_SVR_DUAL, L2R_L1LOSS_SVR_DUAL.
    pub fn is_support_vector_regression(&self) -> bool {
        match self {
            SolverType::L2R_L2LOSS_SVR
            | SolverType::L2R_L2LOSS_SVR_DUAL
            | SolverType::L2R_L1LOSS_SVR_DUAL => true,
            _ => false,
        }
    }
    /// Returns true if the solver supports multi-class classification.
    ///
    /// Supported solvers: All non-SVR solvers.
    pub fn is_multi_class_classification(&self) -> bool {
        !self.is_support_vector_regression()
    }
}

impl Default for SolverType {
    /// Default: L2R_LR
    fn default() -> Self {
        SolverType::L2R_LR
    }
}

/// Represents the tunable parameters of a model.
pub trait LibLinearParameter: Clone {
    /// Solver used for classification or regression.
    fn solver_type(&self) -> SolverType;
    /// Tolerance of termination criterion for optimization (parameter _e_).
    fn stopping_criterion(&self) -> f64;
    /// Cost of constraints violation (parameter _C_).
    ///
    /// Rules the trade-off between regularization and correct classification on data.
    /// It can be seen as the inverse of a regularization constant.
    fn constraints_violation_cost(&self) -> f64;
    /// Sensitivity of loss of support vector regression (parameter _p_).
    fn regression_loss_sensitivity(&self) -> f64;
}

#[doc(hidden)]
pub struct Parameter {
    backing_store_class_cost_penalty_weights: Vec<f64>,
    backing_store_class_cost_penalty_labels: Vec<i32>,
    backing_store_starting_solutions: Vec<f64>,
    bound: ffi::Parameter,
}

impl Parameter {
    fn new(
        solver: SolverType,
        eps: f64,
        cost: f64,
        p: f64,
        cost_penalty_weights: Vec<f64>,
        cost_penalty_labels: Vec<i32>,
        init_solutions: Vec<f64>,
    ) -> Result<Parameter, ParameterError> {
        if cost_penalty_weights.len() != cost_penalty_labels.len() {
            return Err(ParameterError::InvalidParameters {
                e: "Mismatch between cost penalty weights and labels".to_string(),
            });
        }

        let num_weights = cost_penalty_weights.len() as i32;

        let param = Parameter {
            bound: ffi::Parameter {
                solver_type: solver as i32,
                eps,
                C: cost,
                nr_weight: num_weights,
                weight_label: if cost_penalty_labels.is_empty() {
                    ptr::null()
                } else {
                    cost_penalty_labels.as_ptr()
                },
                weight: if cost_penalty_weights.is_empty() {
                    ptr::null()
                } else {
                    cost_penalty_weights.as_ptr()
                },
                p,
                init_sol: if init_solutions.is_empty() {
                    ptr::null()
                } else {
                    init_solutions.as_ptr()
                },
            },
            backing_store_class_cost_penalty_weights: cost_penalty_weights,
            backing_store_class_cost_penalty_labels: cost_penalty_labels,
            backing_store_starting_solutions: init_solutions,
        };

        unsafe {
            let param_error = ffi::check_parameter(ptr::null(), &param.bound);
            if !param_error.is_null() {
                return Err(ParameterError::InvalidParameters {
                    e: CStr::from_ptr(param_error)
                        .to_string_lossy()
                        .to_owned()
                        .to_string(),
                });
            }
        }

        Ok(param)
    }
}

impl LibLinearParameter for Parameter {
    fn solver_type(&self) -> SolverType {
        unsafe { mem::transmute(self.bound.solver_type as i8) }
    }
    fn stopping_criterion(&self) -> f64 {
        self.bound.eps
    }
    fn constraints_violation_cost(&self) -> f64 {
        self.bound.C
    }
    fn regression_loss_sensitivity(&self) -> f64 {
        self.bound.p
    }
}

impl Clone for Parameter {
    fn clone(&self) -> Self {
        let weights = self.backing_store_class_cost_penalty_weights.clone();
        let weight_labels = self.backing_store_class_cost_penalty_labels.clone();
        let init_sol = self.backing_store_starting_solutions.clone();

        Parameter {
            bound: ffi::Parameter {
                solver_type: self.bound.solver_type as i32,
                eps: self.bound.eps,
                C: self.bound.C,
                nr_weight: self.bound.nr_weight,
                weight_label: weight_labels.as_ptr(),
                weight: weights.as_ptr(),
                p: self.bound.p,
                init_sol: init_sol.as_ptr(),
            },
            backing_store_class_cost_penalty_weights: weights,
            backing_store_class_cost_penalty_labels: weight_labels,
            backing_store_starting_solutions: init_sol,
        }
    }
}

/// Builder for [LibLinearParameter](enum.LibLinearParameter.html).
pub struct ParameterBuilder {
    solver_type: SolverType,
    epsilon: f64,
    cost: f64,
    p: f64,
    cost_penalty_weights: Vec<f64>,
    cost_penalty_labels: Vec<i32>,
    init_solutions: Vec<f64>,
}

impl ParameterBuilder {
    fn new() -> ParameterBuilder {
        ParameterBuilder {
            solver_type: SolverType::default(),
            epsilon: 0.01,
            cost: 1.0,
            p: 0.1,
            cost_penalty_weights: Vec::new(),
            cost_penalty_labels: Vec::new(),
            init_solutions: Vec::new(),
        }
    }

    /// Set solver type.
    ///
    /// Default: [L2R_LR](enum.SolverType.html#variant.L2R_LR)
    pub fn solver_type(&mut self, solver_type: SolverType) -> &mut Self {
        self.solver_type = solver_type;
        self
    }
    /// Set tolerance of termination criterion.
    ///
    /// Default: 0.01
    pub fn stopping_criterion(&mut self, epsilon: f64) -> &mut Self {
        self.epsilon = epsilon;
        self
    }
    /// Set cost of constraints violation.
    ///
    /// Default: 1.0
    pub fn constraints_violation_cost(&mut self, cost: f64) -> &mut Self {
        self.cost = cost;
        self
    }

    /// Set tolerance margin in regression loss function of SVR. Not used for classification problems.
    ///
    /// Default: 0.1
    pub fn regression_loss_sensitivity(&mut self, p: f64) -> &mut Self {
        self.p = p;
        self
    }
    /// Set weights to adjust the cost of constraints violation for specific classes.
    ///
    /// Useful when training classifiers on unbalanced input data or with asymmetric mis-classification cost.
    pub fn cost_penalty_weights(&mut self, cost_penalty_weights: Vec<f64>) -> &mut Self {
        self.cost_penalty_weights = cost_penalty_weights;
        self
    }

    /// Set classes that correspond to the weights used to adjust the cost of constraints violation.
    ///
    /// Each weight corresponds to a label at the same index.
    pub fn cost_penalty_labels(&mut self, cost_penalty_labels: Vec<i32>) -> &mut Self {
        self.cost_penalty_labels = cost_penalty_labels;
        self
    }
    /// Set initial solution specification for solvers [L2R_LR](enum.SolverType.html#variant.L2R_LR) and/or [L2R_L2LOSSES_SVC](enum.SolverType.html#variant.L2R_L2LOSSES_SVC).
    pub fn initial_solutions(&mut self, init_solutions: Vec<f64>) -> &mut Self {
        self.init_solutions = init_solutions;
        self
    }

    fn build(self) -> Result<Parameter, Error> {
        Ok(Parameter::new(
            self.solver_type,
            self.epsilon,
            self.cost,
            self.p,
            self.cost_penalty_weights,
            self.cost_penalty_labels,
            self.init_solutions,
        )?)
    }
}

/// Super-trait of [LibLinearModel](trait.LibLinearModel.html) and [LibLinearCrossValidator](trait.LibLinearCrossValidator.html).
pub trait HasLibLinearProblem {
    type Output: LibLinearProblem;
    /// The problem associated with the model/cross-validator.
    ///
    /// This will return `None` when called on a model that was deserialized/loaded from disk.
    fn problem(&self) -> Option<&Self::Output>;
}

/// Super-trait of [LibLinearModel](trait.LibLinearModel.html) and [LibLinearCrossValidator](trait.LibLinearCrossValidator.html).
pub trait HasLibLinearParameter {
    type Output: LibLinearParameter;
    /// The parameters of the model/cross-validator.
    fn parameter(&self) -> &Self::Output;
}

/// Represents a linear model that can be used for prediction.
pub trait LibLinearModel: HasLibLinearProblem + HasLibLinearParameter {
    /// Returns one of the following values:
    ///
    /// * For a classification model, the predicted class is returned.
    /// * For a regression model, the function value of x calculated using the model is returned.
    fn predict(&self, features: PredictionInput) -> Result<f64, ModelError>;

    /// Returns a tuple of the following values:
    ///
    /// * A list of decision values. If k is the number of classes, each element includes results
    /// of predicting k binary-class SVMs. If k=2 and solver is not MCSVM_CS, only one decision value
    ///	is returned.
    ///
    ///   The values correspond to the classes returned by the `labels` method.
    /// * The class with the highest decision value.
    fn predict_values(&self, features: PredictionInput) -> Result<(Vec<f64>, f64), ModelError>;

    /// Returns a tuple of the following values:
    ///
    /// * A list of probability estimates. each element contains k values
    /// indicating the probability that the testing instance is in each class.
    ///
    ///   The values correspond to the classes returned by the `labels` method.
    /// * The class with the highest probability.
    ///
    /// Only supports logistic regression solvers.
    fn predict_probabilities(
        &self,
        features: PredictionInput,
    ) -> Result<(Vec<f64>, f64), ModelError>;

    /// Returns the coefficient for the feature with the given index
    /// and the class with the given (label) index.
    ///
    /// Note that while feature indices start from 1, label indices start from 0.
    /// If the feature index is not in the valid range, a zero value will be returned.
    ///
    /// For classification models, if the label index is not in the valid range, a zero value will be returned.
    /// For regression models, the label index is ignored.
    fn feature_coefficient(&self, feature_index: i32, label_index: i32) -> f64;

    /// Returns the bias term corresponding to the class with the given index
    ///
    /// For classification models, if label index is not in a valid range, a zero value will be returned.
    /// For regression models, the label index is ignored.
    fn label_bias(&self, label_index: i32) -> f64;

    /// Returns the bias of the input data with which the model was trained.
    fn bias(&self) -> f64;

    /// Returns the labels/classes learned by the model.
    fn labels(&self) -> &Vec<i32>;

    /// Returns the number of classes of the model.
    ///
    /// For regression models, 2 is returned.
    fn num_classes(&self) -> usize;

    /// Returns the number of features of the input data with which the model was trained.
    fn num_features(&self) -> usize;

    /// Serializes the model and saves it to disk.
    ///
    /// Only serializes the learned model weights, labels and solver type.
    fn save_to_disk(&self, file_path: &str) -> Result<(), ModelError>;
}

/// Represents a linear model that can be used for validation.
pub trait LibLinearCrossValidator: HasLibLinearProblem + HasLibLinearParameter {
    /// Performs k-folds cross-validation and returns the predicted labels.
    ///
    /// Number of folds must be >= 2.
    fn cross_validation(&self, folds: i32) -> Result<Vec<f64>, ModelError>;

    /// Performs k-folds cross-validation to find the best cost value (parameter _C_) within the
    /// closed search range `(start_C, end_C)` and returns a tuple of the following values:
    ///
    /// * The best cost value.
    /// * The accuracy of the best cost value.
    ///
    /// Cross validation is conducted many times under the following values of _C_:
    /// * `start_C`
    /// * 2 * `start_C`
    /// * 4 * `start_C`
    /// * 8 * `start_C`, and so on
    ///
    /// ...and finds the best one with the highest cross validation accuracy. The procedure stops when
    /// the models of all folds become stable or the cost reaches `end_C`.
    ///
    /// If `start_C` is <= 0, an appropriately small value is automatically calculated and used instead.
    fn find_optimal_constraints_violation_cost(
        &self,
        folds: i32,
        search_range: (f64, f64),
    ) -> Result<(f64, f64), ModelError>;
}

#[doc(hidden)]
struct Model {
    problem: Option<Problem>,
    parameter: Parameter,
    backing_store_labels: Vec<i32>,
    bound: *mut ffi::Model,
}

impl Model {
    fn from_input(
        problem: Problem,
        parameter: Parameter,
        train: bool,
    ) -> Result<Model, ModelError> {
        let mut bound: *mut ffi::Model = ptr::null_mut();
        if train {
            bound = unsafe { ffi::train(&problem.bound, &parameter.bound) };
            if bound.is_null() {
                return Err(ModelError::UnknownError {
                    e: "train() returned a NULL pointer".to_owned().to_string(),
                });
            }
        }

        let mut backing_store_labels = Vec::<i32>::new();
        unsafe {
            if train {
                for i in 0..(*bound).nr_class {
                    backing_store_labels.push(*(*bound).label.offset(i as isize));
                }
            }
        }

        Ok(Model {
            problem: Some(problem),
            parameter,
            backing_store_labels,
            bound,
        })
    }

    fn from_serialized_file(path_to_serialized_model: &str) -> Result<Model, ModelError> {
        unsafe {
            let file_path_cstr = CString::new(path_to_serialized_model).unwrap();
            let bound = ffi::load_model(file_path_cstr.as_ptr());

            if bound.is_null() {
                return Err(ModelError::SerializationError {
                    e: "load_model() returned a NULL pointer"
                        .to_owned()
                        .to_string(),
                });
            }

            let mut backing_store_labels = Vec::<i32>::new();
            for i in 0..(*bound).nr_class {
                backing_store_labels.push(*(*bound).label.offset(i as isize));
            }

            Ok(Model {
                problem: None,
                // solver_type is the only parameter that's serialized to disk
                // init the parameter object with just that and pass the defaults for the rest
                parameter: Parameter::new(
                    mem::transmute((*bound).param.solver_type as i8),
                    0.01,
                    1.0,
                    0.1,
                    Vec::new(),
                    Vec::new(),
                    Vec::new(),
                )
                    .unwrap(),
                backing_store_labels,
                bound,
            })
        }
    }

    fn preprocess_prediction_input(
        &self,
        prediction_input: PredictionInput,
    ) -> Result<Vec<FeatureNode>, PredictionInputError> {
        assert_ne!(self.bound.is_null(), true);

        let last_feature_index = prediction_input.last_feature_index() as i32;
        if last_feature_index as usize != self.num_features() {
            return Err(PredictionInputError::DataError {
                e: format!(
                    "Expected {} features, found {} instead",
                    self.num_features(),
                    last_feature_index
                )
                    .to_string(),
            });
        }

        let bias = unsafe { (*self.bound).bias };
        let has_bias = bias >= 0f64;
        let mut data: Vec<FeatureNode> = prediction_input
            .yield_data()
            .iter()
            .map(|(index, value)| FeatureNode {
                index: *index as i32,
                value: *value,
            })
            .collect();

        if has_bias {
            data.push(FeatureNode {
                index: last_feature_index + 1,
                value: bias,
            });
        }

        data.push(FeatureNode {
            index: -1,
            value: 0f64,
        });

        Ok(data)
    }
}

impl HasLibLinearProblem for Model {
    type Output = Problem;

    fn problem(&self) -> Option<&Self::Output> {
        self.problem.as_ref()
    }
}

impl HasLibLinearParameter for Model {
    type Output = Parameter;

    fn parameter(&self) -> &Self::Output {
        &self.parameter
    }
}

impl LibLinearModel for Model {
    fn predict(&self, features: PredictionInput) -> Result<f64, ModelError> {
        Ok(self.predict_values(features)?.1)
    }

    fn predict_values(&self, features: PredictionInput) -> Result<(Vec<f64>, f64), ModelError> {
        let transformed_features = self.preprocess_prediction_input(features).map_err(|err| {
            ModelError::PredictionError {
                e: format!("{}", err).to_string(),
            }
        })?;
        unsafe {
            let mut output_values: Vec<f64> = match (*self.bound).nr_class {
                2 => vec![0f64; 1],
                l => vec![0f64; l as usize],
            };

            let best_class = ffi::predict_values(
                self.bound,
                transformed_features.as_ptr(),
                output_values.as_mut_ptr(),
            );
            Ok((output_values, best_class))
        }
    }

    fn predict_probabilities(
        &self,
        features: PredictionInput,
    ) -> Result<(Vec<f64>, f64), ModelError> {
        let transformed_features = self.preprocess_prediction_input(features).map_err(|err| {
            ModelError::PredictionError {
                e: format!("{}", err).to_string(),
            }
        })?;

        if !self.parameter.solver_type().is_logistic_regression() {
            return Err(ModelError::PredictionError {
                e: "Probability output is only supported for logistic regression".to_string(),
            });
        }

        unsafe {
            let mut output_probabilities = vec![0f64; (*self.bound).nr_class as usize];

            let best_class = ffi::predict_values(
                self.bound,
                transformed_features.as_ptr(),
                output_probabilities.as_mut_ptr(),
            );
            Ok((output_probabilities, best_class))
        }
    }

    fn feature_coefficient(&self, feature_index: i32, label_index: i32) -> f64 {
        unsafe { ffi::get_decfun_coef(self.bound, feature_index, label_index) }
    }

    fn label_bias(&self, label_index: i32) -> f64 {
        unsafe { ffi::get_decfun_bias(self.bound, label_index) }
    }

    fn bias(&self) -> f64 {
        unsafe { (*self.bound).bias }
    }

    fn labels(&self) -> &Vec<i32> {
        &self.backing_store_labels
    }

    fn num_classes(&self) -> usize {
        unsafe { (*self.bound).nr_class as usize }
    }

    fn num_features(&self) -> usize {
        unsafe { (*self.bound).nr_feature as usize }
    }

    fn save_to_disk(&self, file_path: &str) -> Result<(), ModelError> {
        unsafe {
            let file_path_cstr = CString::new(file_path).unwrap();
            let result = ffi::save_model(file_path_cstr.as_ptr(), self.bound);
            if result == -1 {
                return Err(ModelError::SerializationError {
                    e: "save_model() returned -1".to_owned().to_string(),
                });
            }
        }

        Ok(())
    }
}

impl LibLinearCrossValidator for Model {
    fn cross_validation(&self, folds: i32) -> Result<Vec<f64>, ModelError> {
        if folds < 2 {
            return Err(ModelError::InvalidState {
                e: "Number of folds must be >= 2 for cross validator"
                    .to_owned()
                    .to_string(),
            });
        } else if self.problem.is_none() {
            return Err(ModelError::InvalidState {
                e: "Invalid problem/parameters for cross validator"
                    .to_owned()
                    .to_string(),
            });
        }

        unsafe {
            let mut output_labels = vec![0f64; self.problem.as_ref().unwrap().bound.l as usize];

            ffi::cross_validation(
                &self.problem.as_ref().unwrap().bound,
                &self.parameter.bound,
                folds,
                output_labels.as_mut_ptr(),
            );
            Ok(output_labels)
        }
    }

    fn find_optimal_constraints_violation_cost(
        &self,
        folds: i32,
        search_range: (f64, f64),
    ) -> Result<(f64, f64), ModelError> {
        if folds < 2 {
            return Err(ModelError::InvalidState {
                e: "Number of folds must be >= 2 for cross validator"
                    .to_owned()
                    .to_string(),
            });
        } else if self.problem.is_none() {
            return Err(ModelError::InvalidState {
                e: "Invalid problem/parameters for cross validator"
                    .to_owned()
                    .to_string(),
            });
        }

        unsafe {
            let mut best_cost = 0f64;
            let mut best_rate = 0f64;
            ffi::find_parameter_C(
                &self.problem.as_ref().unwrap().bound,
                &self.parameter.bound,
                folds,
                search_range.0,
                search_range.1,
                &mut best_cost,
                &mut best_rate,
            );
            Ok((best_cost, best_rate))
        }
    }
}

impl Drop for Model {
    fn drop(&mut self) {
        unsafe {
            let mut temp = self.bound;
            ffi::free_and_destroy_model(&mut temp);
        }
    }
}

/// Primary model builder. Functions as the entry point into the API.
pub struct Builder {
    problem_builder: ProblemBuilder,
    parameter_builder: ParameterBuilder,
}

impl Builder {
    /// Creates a new instance of the builder.
    pub fn new() -> Builder {
        Builder {
            problem_builder: ProblemBuilder::new(),
            parameter_builder: ParameterBuilder::new(),
        }
    }

    /// Builder for the model's linear problem.
    pub fn problem(&mut self) -> &mut ProblemBuilder {
        &mut self.problem_builder
    }
    /// Builder for the model's tunable parameters.
    pub fn parameters(&mut self) -> &mut ParameterBuilder {
        &mut self.parameter_builder
    }
    /// Builds a [LibLinearCrossValidator](trait.LibLinearCrossValidator.html) instance with the given problem and parameters.
    pub fn build_cross_validator(self) -> Result<impl LibLinearCrossValidator, Error> {
        Ok(Model::from_input(
            self.problem_builder.build()?,
            self.parameter_builder.build()?,
            false,
        )?)
    }
    /// Builds a [LibLinearModel](trait.LibLinearModel.html) instance with the given problem and parameters.
    pub fn build_model(self) -> Result<impl LibLinearModel, Error> {
        Ok(Model::from_input(
            self.problem_builder.build()?,
            self.parameter_builder.build()?,
            true,
        )?)
    }
}

/// Helper struct to serialize and deserialize [LibLinearModel](trait.LibLinearModel.html) instances.
pub struct Serializer;

impl Serializer {
    /// Loads a model from disk.
    ///
    /// The loaded model will have no associated [LibLinearProblem](trait.LibLinearProblem.html) instance.
    /// With the exception of the solver type, all parameters in the associated [LibLinearParameter](trait.LibLinearParameter.html) instance
    /// will be reset to their default values.
    pub fn load_model(path_to_serialized_model: &str) -> Result<impl LibLinearModel, Error> {
        Ok(Model::from_serialized_file(path_to_serialized_model)?)
    }

    /// Saves a model to disk.
    ///
    /// Convenience method that calls `save_to_disk` on the model instance.
    pub fn save_model(
        path_to_serialized_model: &str,
        model: &impl LibLinearModel,
    ) -> Result<(), Error> {
        Ok(model.save_to_disk(path_to_serialized_model)?)
    }
}

/// The version of the bundled liblinear C-library.
pub fn liblinear_version() -> i32 {
    unsafe { ffi::liblinear_version }
}

/// Toggles the log output liblinear prints to the program's `stdout`.
pub fn toggle_liblinear_stdout_output(state: bool) {
    unsafe {
        match state {
            true => ffi::set_print_string_function(None),
            false => ffi::set_print_string_function(Some(ffi::silence_liblinear_stdout)),
        }
    }
}