1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
// Copyright (c) 2017, Lawrence Livermore National Security, LLC. Produced at
// the Lawrence Livermore National Laboratory. LLNL-CODE-734707. All Rights
// reserved. See files LICENSE and NOTICE for details.
//
// This file is part of CEED, a collection of benchmarks, miniapps, software
// libraries and APIs for efficient high-order finite element and spectral
// element discretizations for exascale applications. For more information and
// source code availability see http://github.com/ceed.
//
// The CEED research is supported by the Exascale Computing Project 17-SC-20-SC,
// a collaborative effort of two U.S. Department of Energy organizations (Office
// of Science and the National Nuclear Security Administration) responsible for
// the planning and preparation of a capable exascale ecosystem, including
// software, applications, hardware, advanced system engineering and early
// testbed platforms, in support of the nation's exascale computing imperative

//! A Ceed Basis defines the discrete finite element basis and associated
//! quadrature rule.

use crate::prelude::*;

// -----------------------------------------------------------------------------
// CeedBasis option
// -----------------------------------------------------------------------------
#[derive(Clone, Copy)]
pub enum BasisOpt<'a> {
    Some(&'a Basis<'a>),
    Collocated,
}
/// Construct a BasisOpt reference from a Basis reference
impl<'a> From<&'a Basis<'_>> for BasisOpt<'a> {
    fn from(basis: &'a Basis) -> Self {
        debug_assert!(basis.ptr != unsafe { bind_ceed::CEED_BASIS_COLLOCATED });
        Self::Some(basis)
    }
}
impl<'a> BasisOpt<'a> {
    /// Transform a Rust libCEED BasisOpt into C libCEED CeedBasis
    pub(crate) fn to_raw(self) -> bind_ceed::CeedBasis {
        match self {
            Self::Some(basis) => basis.ptr,
            Self::Collocated => unsafe { bind_ceed::CEED_BASIS_COLLOCATED },
        }
    }
}

// -----------------------------------------------------------------------------
// CeedBasis context wrapper
// -----------------------------------------------------------------------------
pub struct Basis<'a> {
    ceed: &'a crate::Ceed,
    pub(crate) ptr: bind_ceed::CeedBasis,
}

// -----------------------------------------------------------------------------
// Destructor
// -----------------------------------------------------------------------------
impl<'a> Drop for Basis<'a> {
    fn drop(&mut self) {
        unsafe {
            if self.ptr != bind_ceed::CEED_BASIS_COLLOCATED {
                bind_ceed::CeedBasisDestroy(&mut self.ptr);
            }
        }
    }
}

// -----------------------------------------------------------------------------
// Display
// -----------------------------------------------------------------------------
impl<'a> fmt::Display for Basis<'a> {
    /// View a Basis
    ///
    /// ```
    /// # use libceed::prelude::*;
    /// # let ceed = libceed::Ceed::default_init();
    /// let b = ceed
    ///     .basis_tensor_H1_Lagrange(1, 2, 3, 4, QuadMode::Gauss)
    ///     .unwrap();
    /// println!("{}", b);
    /// ```
    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
        let mut ptr = std::ptr::null_mut();
        let mut sizeloc = crate::MAX_BUFFER_LENGTH;
        let cstring = unsafe {
            let file = bind_ceed::open_memstream(&mut ptr, &mut sizeloc);
            bind_ceed::CeedBasisView(self.ptr, file);
            bind_ceed::fclose(file);
            CString::from_raw(ptr)
        };
        cstring.to_string_lossy().fmt(f)
    }
}

// -----------------------------------------------------------------------------
// Implementations
// -----------------------------------------------------------------------------
impl<'a> Basis<'a> {
    // Constructors
    pub fn create_tensor_H1(
        ceed: &'a crate::Ceed,
        dim: usize,
        ncomp: usize,
        P1d: usize,
        Q1d: usize,
        interp1d: &[f64],
        grad1d: &[f64],
        qref1d: &[f64],
        qweight1d: &[f64],
    ) -> crate::Result<Self> {
        let mut ptr = std::ptr::null_mut();
        let (dim, ncomp, P1d, Q1d) = (
            i32::try_from(dim).unwrap(),
            i32::try_from(ncomp).unwrap(),
            i32::try_from(P1d).unwrap(),
            i32::try_from(Q1d).unwrap(),
        );
        let ierr = unsafe {
            bind_ceed::CeedBasisCreateTensorH1(
                ceed.ptr,
                dim,
                ncomp,
                P1d,
                Q1d,
                interp1d.as_ptr(),
                grad1d.as_ptr(),
                qref1d.as_ptr(),
                qweight1d.as_ptr(),
                &mut ptr,
            )
        };
        ceed.check_error(ierr)?;
        Ok(Self { ceed, ptr })
    }

    pub fn create_tensor_H1_Lagrange(
        ceed: &'a crate::Ceed,
        dim: usize,
        ncomp: usize,
        P: usize,
        Q: usize,
        qmode: crate::QuadMode,
    ) -> crate::Result<Self> {
        let mut ptr = std::ptr::null_mut();
        let (dim, ncomp, P, Q, qmode) = (
            i32::try_from(dim).unwrap(),
            i32::try_from(ncomp).unwrap(),
            i32::try_from(P).unwrap(),
            i32::try_from(Q).unwrap(),
            qmode as bind_ceed::CeedQuadMode,
        );
        let ierr = unsafe {
            bind_ceed::CeedBasisCreateTensorH1Lagrange(ceed.ptr, dim, ncomp, P, Q, qmode, &mut ptr)
        };
        ceed.check_error(ierr)?;
        Ok(Self { ceed, ptr })
    }

    pub fn create_H1(
        ceed: &'a crate::Ceed,
        topo: crate::ElemTopology,
        ncomp: usize,
        nnodes: usize,
        nqpts: usize,
        interp: &[f64],
        grad: &[f64],
        qref: &[f64],
        qweight: &[f64],
    ) -> crate::Result<Self> {
        let mut ptr = std::ptr::null_mut();
        let (topo, ncomp, nnodes, nqpts) = (
            topo as bind_ceed::CeedElemTopology,
            i32::try_from(ncomp).unwrap(),
            i32::try_from(nnodes).unwrap(),
            i32::try_from(nqpts).unwrap(),
        );
        let ierr = unsafe {
            bind_ceed::CeedBasisCreateH1(
                ceed.ptr,
                topo,
                ncomp,
                nnodes,
                nqpts,
                interp.as_ptr(),
                grad.as_ptr(),
                qref.as_ptr(),
                qweight.as_ptr(),
                &mut ptr,
            )
        };
        ceed.check_error(ierr)?;
        Ok(Self { ceed, ptr })
    }

    /// Apply basis evaluation from nodes to quadrature points or vice versa
    ///
    /// * `nelem` - The number of elements to apply the basis evaluation to
    /// * `tmode` - `TrasposeMode::NoTranspose` to evaluate from nodes to
    ///               quadrature points, `TransposeMode::Transpose` to apply the
    ///               transpose, mapping from quadrature points to nodes
    /// * `emode` - `EvalMode::None` to use values directly, `EvalMode::Interp`
    ///               to use interpolated values, `EvalMode::Grad` to use
    ///               gradients, `EvalMode::Weight` to use quadrature weights
    /// * `u`     - Input Vector
    /// * `v`     - Output Vector
    ///
    /// ```
    /// # use libceed::prelude::*;
    /// # let ceed = libceed::Ceed::default_init();
    /// const Q: usize = 6;
    /// let bu = ceed
    ///     .basis_tensor_H1_Lagrange(1, 1, Q, Q, QuadMode::GaussLobatto)
    ///     .unwrap();
    /// let bx = ceed
    ///     .basis_tensor_H1_Lagrange(1, 1, 2, Q, QuadMode::Gauss)
    ///     .unwrap();
    ///
    /// let x_corners = ceed.vector_from_slice(&[-1., 1.]).unwrap();
    /// let mut x_qpts = ceed.vector(Q).unwrap();
    /// let mut x_nodes = ceed.vector(Q).unwrap();
    /// bx.apply(
    ///     1,
    ///     TransposeMode::NoTranspose,
    ///     EvalMode::Interp,
    ///     &x_corners,
    ///     &mut x_nodes,
    /// );
    /// bu.apply(
    ///     1,
    ///     TransposeMode::NoTranspose,
    ///     EvalMode::Interp,
    ///     &x_nodes,
    ///     &mut x_qpts,
    /// );
    ///
    /// // Create function x^3 + 1 on Gauss Lobatto points
    /// let mut u_arr = [0.; Q];
    /// u_arr
    ///     .iter_mut()
    ///     .zip(x_nodes.view().iter())
    ///     .for_each(|(u, x)| *u = x * x * x + 1.);
    /// let u = ceed.vector_from_slice(&u_arr).unwrap();
    ///
    /// // Map function to Gauss points
    /// let mut v = ceed.vector(Q).unwrap();
    /// v.set_value(0.);
    /// bu.apply(1, TransposeMode::NoTranspose, EvalMode::Interp, &u, &mut v)
    ///     .unwrap();
    ///
    /// // Verify results
    /// v.view()
    ///     .iter()
    ///     .zip(x_qpts.view().iter())
    ///     .for_each(|(v, x)| {
    ///         let true_value = x * x * x + 1.;
    ///         assert_eq!(*v, true_value, "Incorrect basis application");
    ///     });
    /// ```
    pub fn apply(
        &self,
        nelem: usize,
        tmode: TransposeMode,
        emode: EvalMode,
        u: &Vector,
        v: &mut Vector,
    ) -> crate::Result<i32> {
        let (nelem, tmode, emode) = (
            i32::try_from(nelem).unwrap(),
            tmode as bind_ceed::CeedTransposeMode,
            emode as bind_ceed::CeedEvalMode,
        );
        let ierr =
            unsafe { bind_ceed::CeedBasisApply(self.ptr, nelem, tmode, emode, u.ptr, v.ptr) };
        self.ceed.check_error(ierr)
    }

    /// Returns the dimension for given CeedBasis
    ///
    /// ```
    /// # use libceed::prelude::*;
    /// # let ceed = libceed::Ceed::default_init();
    /// let dim = 2;
    /// let b = ceed
    ///     .basis_tensor_H1_Lagrange(dim, 1, 3, 4, QuadMode::Gauss)
    ///     .unwrap();
    ///
    /// let d = b.dimension();
    /// assert_eq!(d, dim, "Incorrect dimension");
    /// ```
    pub fn dimension(&self) -> usize {
        let mut dim = 0;
        unsafe { bind_ceed::CeedBasisGetDimension(self.ptr, &mut dim) };
        usize::try_from(dim).unwrap()
    }

    /// Returns number of components for given CeedBasis
    ///
    /// ```
    /// # use libceed::prelude::*;
    /// # let ceed = libceed::Ceed::default_init();
    /// let ncomp = 2;
    /// let b = ceed
    ///     .basis_tensor_H1_Lagrange(1, ncomp, 3, 4, QuadMode::Gauss)
    ///     .unwrap();
    ///
    /// let n = b.num_components();
    /// assert_eq!(n, ncomp, "Incorrect number of components");
    /// ```
    pub fn num_components(&self) -> usize {
        let mut ncomp = 0;
        unsafe { bind_ceed::CeedBasisGetNumComponents(self.ptr, &mut ncomp) };
        usize::try_from(ncomp).unwrap()
    }

    /// Returns total number of nodes (in dim dimensions) of a CeedBasis
    ///
    /// ```
    /// # use libceed::prelude::*;
    /// # let ceed = libceed::Ceed::default_init();
    /// let p = 3;
    /// let b = ceed
    ///     .basis_tensor_H1_Lagrange(2, 1, p, 4, QuadMode::Gauss)
    ///     .unwrap();
    ///
    /// let nnodes = b.num_nodes();
    /// assert_eq!(nnodes, p * p, "Incorrect number of nodes");
    /// ```
    pub fn num_nodes(&self) -> usize {
        let mut nnodes = 0;
        unsafe { bind_ceed::CeedBasisGetNumNodes(self.ptr, &mut nnodes) };
        usize::try_from(nnodes).unwrap()
    }

    /// Returns total number of quadrature points (in dim dimensions) of a
    /// CeedBasis
    ///
    /// ```
    /// # use libceed::prelude::*;
    /// # let ceed = libceed::Ceed::default_init();
    /// let q = 4;
    /// let b = ceed
    ///     .basis_tensor_H1_Lagrange(2, 1, 3, q, QuadMode::Gauss)
    ///     .unwrap();
    ///
    /// let nqpts = b.num_quadrature_points();
    /// assert_eq!(nqpts, q * q, "Incorrect number of quadrature points");
    /// ```
    pub fn num_quadrature_points(&self) -> usize {
        let mut Q = 0;
        unsafe {
            bind_ceed::CeedBasisGetNumQuadraturePoints(self.ptr, &mut Q);
        }
        usize::try_from(Q).unwrap()
    }
}

// -----------------------------------------------------------------------------