1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
//! This module contains the `concolic` stages, which can trace a target using symbolic execution
//! and use the results for fuzzer input and mutations.
//!

use alloc::string::String;
#[cfg(feature = "concolic_mutation")]
use alloc::{string::ToString, vec::Vec};
#[cfg(feature = "concolic_mutation")]
use core::marker::PhantomData;

use libafl_bolts::{tuples::MatchName, Named};

#[cfg(all(feature = "concolic_mutation", feature = "introspection"))]
use crate::monitors::PerfFeature;
#[cfg(all(feature = "introspection", feature = "concolic_mutation"))]
use crate::state::HasClientPerfMonitor;
use crate::{
    executors::{Executor, HasObservers},
    observers::concolic::ConcolicObserver,
    stages::{RetryRestartHelper, Stage, TracingStage},
    state::{HasCorpus, HasCurrentTestcase, HasExecutions, UsesState},
    Error, HasMetadata, HasNamedMetadata,
};
#[cfg(feature = "concolic_mutation")]
use crate::{
    inputs::HasBytesVec,
    mark_feature_time,
    observers::concolic::{ConcolicMetadata, SymExpr, SymExprRef},
    stages::ExecutionCountRestartHelper,
    start_timer,
    state::State,
    Evaluator,
};

/// Wraps a [`TracingStage`] to add concolic observing.
#[derive(Clone, Debug)]
pub struct ConcolicTracingStage<EM, TE, Z> {
    inner: TracingStage<EM, TE, Z>,
    observer_name: String,
}

impl<EM, TE, Z> UsesState for ConcolicTracingStage<EM, TE, Z>
where
    TE: UsesState,
{
    type State = TE::State;
}

impl<EM, TE, Z> Named for ConcolicTracingStage<EM, TE, Z> {
    fn name(&self) -> &str {
        "ConcolicTracingStage"
    }
}

impl<E, EM, TE, Z> Stage<E, EM, Z> for ConcolicTracingStage<EM, TE, Z>
where
    E: UsesState<State = TE::State>,
    EM: UsesState<State = TE::State>,
    TE: Executor<EM, Z> + HasObservers,
    TE::State: HasExecutions + HasCorpus + HasNamedMetadata,
    Z: UsesState<State = TE::State>,
{
    #[inline]
    fn perform(
        &mut self,
        fuzzer: &mut Z,
        _executor: &mut E,
        state: &mut TE::State,
        manager: &mut EM,
    ) -> Result<(), Error> {
        self.inner.trace(fuzzer, state, manager)?;
        if let Some(observer) = self
            .inner
            .executor()
            .observers()
            .match_name::<ConcolicObserver>(&self.observer_name)
        {
            let metadata = observer.create_metadata_from_current_map();
            state
                .current_testcase_mut()?
                .metadata_map_mut()
                .insert(metadata);
        }
        Ok(())
    }

    fn restart_progress_should_run(&mut self, state: &mut Self::State) -> Result<bool, Error> {
        RetryRestartHelper::restart_progress_should_run(state, self, 3)
    }

    fn clear_restart_progress(&mut self, state: &mut Self::State) -> Result<(), Error> {
        RetryRestartHelper::clear_restart_progress(state, self)
    }
}

impl<EM, TE, Z> ConcolicTracingStage<EM, TE, Z> {
    /// Creates a new default tracing stage using the given [`Executor`], observing traces from a
    /// [`ConcolicObserver`] with the given name.
    pub fn new(inner: TracingStage<EM, TE, Z>, observer_name: String) -> Self {
        Self {
            inner,
            observer_name,
        }
    }
}

#[cfg(feature = "concolic_mutation")]
#[allow(clippy::too_many_lines)]
fn generate_mutations(iter: impl Iterator<Item = (SymExprRef, SymExpr)>) -> Vec<Vec<(usize, u8)>> {
    use hashbrown::HashMap;
    use z3::{
        ast::{Ast, Bool, Dynamic, BV},
        Config, Context, Solver, Symbol,
    };
    fn build_extract<'ctx>(
        bv: &BV<'ctx>,
        offset: u64,
        length: u64,
        little_endian: bool,
    ) -> BV<'ctx> {
        let size = u64::from(bv.get_size());
        assert_eq!(
            size % 8,
            0,
            "can't extract on byte-boundary on BV that is not byte-sized"
        );

        if little_endian {
            (0..length)
                .map(|i| {
                    bv.extract(
                        (size - (offset + i) * 8 - 1).try_into().unwrap(),
                        (size - (offset + i + 1) * 8).try_into().unwrap(),
                    )
                })
                .reduce(|acc, next| next.concat(&acc))
                .unwrap()
        } else {
            bv.extract(
                (size - offset * 8 - 1).try_into().unwrap(),
                (size - (offset + length) * 8).try_into().unwrap(),
            )
        }
    }

    let mut res = Vec::new();

    let mut cfg = Config::new();
    cfg.set_timeout_msec(10_000);
    let ctx = Context::new(&cfg);
    let solver = Solver::new(&ctx);

    let mut translation = HashMap::<SymExprRef, Dynamic>::new();

    macro_rules! bool {
        ($op:ident) => {
            translation[&$op].as_bool().unwrap()
        };
    }

    macro_rules! bv {
        ($op:ident) => {
            translation[&$op].as_bv().unwrap()
        };
    }

    macro_rules! bv_binop {
        ($a:ident $op:tt $b:ident) => {
            Some(bv!($a).$op(&bv!($b)).into())
        };
    }

    for (id, msg) in iter {
        let z3_expr: Option<Dynamic> = match msg {
            SymExpr::InputByte { offset, .. } => {
                Some(BV::new_const(&ctx, Symbol::Int(offset as u32), 8).into())
            }
            SymExpr::Integer { value, bits } => {
                Some(BV::from_u64(&ctx, value, u32::from(bits)).into())
            }
            SymExpr::Integer128 { high: _, low: _ } => todo!(),
            SymExpr::NullPointer => Some(BV::from_u64(&ctx, 0, usize::BITS).into()),
            SymExpr::True => Some(Bool::from_bool(&ctx, true).into()),
            SymExpr::False => Some(Bool::from_bool(&ctx, false).into()),
            SymExpr::Bool { value } => Some(Bool::from_bool(&ctx, value).into()),
            SymExpr::Neg { op } => Some(bv!(op).bvneg().into()),
            SymExpr::Add { a, b } => bv_binop!(a bvadd b),
            SymExpr::Sub { a, b } => bv_binop!(a bvsub b),
            SymExpr::Mul { a, b } => bv_binop!(a bvmul b),
            SymExpr::UnsignedDiv { a, b } => bv_binop!(a bvudiv b),
            SymExpr::SignedDiv { a, b } => bv_binop!(a bvsdiv b),
            SymExpr::UnsignedRem { a, b } => bv_binop!(a bvurem b),
            SymExpr::SignedRem { a, b } => bv_binop!(a bvsrem b),
            SymExpr::ShiftLeft { a, b } => bv_binop!(a bvshl b),
            SymExpr::LogicalShiftRight { a, b } => bv_binop!(a bvlshr b),
            SymExpr::ArithmeticShiftRight { a, b } => bv_binop!(a bvashr b),
            SymExpr::SignedLessThan { a, b } => bv_binop!(a bvslt b),
            SymExpr::SignedLessEqual { a, b } => bv_binop!(a bvsle b),
            SymExpr::SignedGreaterThan { a, b } => bv_binop!(a bvsgt b),
            SymExpr::SignedGreaterEqual { a, b } => bv_binop!(a bvsge b),
            SymExpr::UnsignedLessThan { a, b } => bv_binop!(a bvult b),
            SymExpr::UnsignedLessEqual { a, b } => bv_binop!(a bvule b),
            SymExpr::UnsignedGreaterThan { a, b } => bv_binop!(a bvugt b),
            SymExpr::UnsignedGreaterEqual { a, b } => bv_binop!(a bvuge b),
            SymExpr::Not { op } => {
                let translated = &translation[&op];
                Some(if let Some(bv) = translated.as_bv() {
                    bv.bvnot().into()
                } else if let Some(bool) = translated.as_bool() {
                    bool.not().into()
                } else {
                    panic!(
                        "unexpected z3 expr of type {:?} when applying not operation",
                        translated.kind()
                    )
                })
            }
            SymExpr::Equal { a, b } => Some(translation[&a]._eq(&translation[&b]).into()),
            SymExpr::NotEqual { a, b } => Some(translation[&a]._eq(&translation[&b]).not().into()),
            SymExpr::BoolAnd { a, b } => Some(Bool::and(&ctx, &[&bool!(a), &bool!(b)]).into()),
            SymExpr::BoolOr { a, b } => Some(Bool::or(&ctx, &[&bool!(a), &bool!(b)]).into()),
            SymExpr::BoolXor { a, b } => Some(bool!(a).xor(&bool!(b)).into()),
            SymExpr::And { a, b } => bv_binop!(a bvand b),
            SymExpr::Or { a, b } => bv_binop!(a bvor b),
            SymExpr::Xor { a, b } => bv_binop!(a bvxor b),
            SymExpr::Sext { op, bits } => Some(bv!(op).sign_ext(u32::from(bits)).into()),
            SymExpr::Zext { op, bits } => Some(bv!(op).zero_ext(u32::from(bits)).into()),
            SymExpr::Trunc { op, bits } => Some(bv!(op).extract(u32::from(bits - 1), 0).into()),
            SymExpr::BoolToBit { op } => Some(
                bool!(op)
                    .ite(&BV::from_u64(&ctx, 1, 1), &BV::from_u64(&ctx, 0, 1))
                    .into(),
            ),
            SymExpr::Concat { a, b } => bv_binop!(a concat b),
            SymExpr::Extract {
                op,
                first_bit,
                last_bit,
            } => Some(bv!(op).extract(first_bit as u32, last_bit as u32).into()),
            SymExpr::Insert {
                target,
                to_insert,
                offset,
                little_endian,
            } => {
                let target = bv!(target);
                let to_insert = bv!(to_insert);
                let bits_to_insert = u64::from(to_insert.get_size());
                assert_eq!(bits_to_insert % 8, 0, "can only insert full bytes");
                let after_len = (u64::from(target.get_size()) / 8) - offset - (bits_to_insert / 8);
                Some(
                    [
                        if offset == 0 {
                            None
                        } else {
                            Some(build_extract(&target, 0, offset, false))
                        },
                        Some(if little_endian {
                            build_extract(&to_insert, 0, bits_to_insert / 8, true)
                        } else {
                            to_insert
                        }),
                        if after_len == 0 {
                            None
                        } else {
                            Some(build_extract(
                                &target,
                                offset + (bits_to_insert / 8),
                                after_len,
                                false,
                            ))
                        },
                    ]
                    .into_iter()
                    .reduce(|acc: Option<BV>, val: Option<BV>| match (acc, val) {
                        (Some(prev), Some(next)) => Some(prev.concat(&next)),
                        (Some(prev), None) => Some(prev),
                        (None, next) => next,
                    })
                    .unwrap()
                    .unwrap()
                    .into(),
                )
            }
            _ => None,
        };
        if let Some(expr) = z3_expr {
            translation.insert(id, expr);
        } else if let SymExpr::PathConstraint {
            constraint, taken, ..
        } = msg
        {
            let op = translation[&constraint].as_bool().unwrap();
            let op = if taken { op } else { op.not() }.simplify();
            if op.as_bool().is_some() {
                // this constraint is useless, as it is always sat or unsat
            } else {
                let negated_constraint = op.not().simplify();
                solver.push();
                solver.assert(&negated_constraint);
                match solver.check() {
                    z3::SatResult::Unsat => {
                        // negation is unsat => no mutation
                        solver.pop(1);
                        // check that out path is ever still sat, otherwise, we can stop trying
                        if matches!(
                            solver.check(),
                            z3::SatResult::Unknown | z3::SatResult::Unsat
                        ) {
                            return res;
                        }
                    }
                    z3::SatResult::Unknown => {
                        // we've got a problem. ignore
                    }
                    z3::SatResult::Sat => {
                        let model = solver.get_model().unwrap();
                        let model_string = model.to_string();
                        let mut replacements = Vec::new();
                        for l in model_string.lines() {
                            if let [offset_str, value_str] =
                                l.split(" -> ").collect::<Vec<_>>().as_slice()
                            {
                                let offset = offset_str
                                    .trim_start_matches("k!")
                                    .parse::<usize>()
                                    .unwrap();
                                let value =
                                    u8::from_str_radix(value_str.trim_start_matches("#x"), 16)
                                        .unwrap();
                                replacements.push((offset, value));
                            } else {
                                panic!();
                            }
                        }
                        res.push(replacements);
                        solver.pop(1);
                    }
                };
                // assert the path constraint
                solver.assert(&op);
            }
        }
    }

    res
}

/// A mutational stage that uses Z3 to solve concolic constraints attached to the [`crate::corpus::Testcase`] by the [`ConcolicTracingStage`].
#[cfg(feature = "concolic_mutation")]
#[derive(Clone, Debug)]
pub struct SimpleConcolicMutationalStage<Z> {
    /// The helper keeps track of progress for timeouting/restarting targets
    restart_helper: ExecutionCountRestartHelper,
    phantom: PhantomData<Z>,
}

#[cfg(feature = "concolic_mutation")]
impl<Z> UsesState for SimpleConcolicMutationalStage<Z>
where
    Z: UsesState,
{
    type State = Z::State;
}

#[cfg(feature = "concolic_mutation")]
impl<E, EM, Z> Stage<E, EM, Z> for SimpleConcolicMutationalStage<Z>
where
    E: UsesState<State = Z::State>,
    EM: UsesState<State = Z::State>,
    Z: Evaluator<E, EM>,
    Z::Input: HasBytesVec,
    Z::State: State + HasExecutions + HasCorpus + HasMetadata,
{
    #[inline]
    fn perform(
        &mut self,
        fuzzer: &mut Z,
        executor: &mut E,
        state: &mut Z::State,
        manager: &mut EM,
    ) -> Result<(), Error> {
        {
            start_timer!(state);
            mark_feature_time!(state, PerfFeature::GetInputFromCorpus);
        }
        let testcase = state.current_testcase()?.clone();

        let mutations = testcase.metadata::<ConcolicMetadata>().ok().map(|meta| {
            start_timer!(state);
            let mutations = { generate_mutations(meta.iter_messages()) };
            mark_feature_time!(state, PerfFeature::Mutate);
            mutations
        });

        let post_restart_skip_cnt =
            usize::try_from(self.restart_helper.execs_since_progress_start(state)?)?;

        if let Some(mutations) = mutations {
            for mutation in mutations.into_iter().skip(post_restart_skip_cnt) {
                let mut input_copy = state.current_input_cloned()?;
                for (index, new_byte) in mutation {
                    input_copy.bytes_mut()[index] = new_byte;
                }
                // Time is measured directly the `evaluate_input` function
                fuzzer.evaluate_input(state, executor, manager, input_copy)?;
            }
        }
        Ok(())
    }

    #[inline]
    fn restart_progress_should_run(&mut self, state: &mut Self::State) -> Result<bool, Error> {
        self.restart_helper.restart_progress_should_run(state)
    }

    #[inline]
    fn clear_restart_progress(&mut self, state: &mut Self::State) -> Result<(), Error> {
        self.restart_helper.clear_restart_progress(state)
    }
}

#[cfg(feature = "concolic_mutation")]
impl<Z> Default for SimpleConcolicMutationalStage<Z> {
    fn default() -> Self {
        Self {
            restart_helper: ExecutionCountRestartHelper::default(),
            phantom: PhantomData,
        }
    }
}