1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
use crate::{Buffer, CryptoResult};

/// syntactic sugar for named parameters to clarify buffer usage
/// # Example
///
/// ```compile_fail
/// kx_client_session_keys!(self.crypto =>
///     client_rx: &mut c_rx,
///     client_tx: &mut c_tx,
///     client_pk: &c_pk,
///     client_sk: &c_sk,
///     server_pk: &s_pk,
/// ).unwrap();
/// ```
#[macro_export]
macro_rules! kx_client_session_keys {
    ($cs:expr => client_rx: $c_rx:expr, client_tx: $c_tx:expr, client_pk: $c_pk:expr, client_sk: $c_sk:expr, server_pk: $s_pk:expr) => {
        $cs.kx_client_session_keys($c_rx, $c_tx, $c_pk, $c_sk, $s_pk)
    };
    ($cs:expr => client_rx: $c_rx:expr, client_tx: $c_tx:expr, client_pk: $c_pk:expr, client_sk: $c_sk:expr, server_pk: $s_pk:expr,) => {
        $cs.kx_client_session_keys($c_rx, $c_tx, $c_pk, $c_sk, $s_pk)
    };
}

/// syntactic sugar for named parameters to clarify buffer usage
/// # Example
///
/// ```compile_fail
/// kx_server_session_keys!(self.crypto =>
///     server_rx: &mut s_rx,
///     server_tx: &mut s_tx,
///     server_pk: &s_pk,
///     server_sk: &s_sk,
///     client_pk: &c_pk,
/// ).unwrap();
/// ```
#[macro_export]
macro_rules! kx_server_session_keys {
    ($cs:expr => server_rx: $s_rx:expr, server_tx: $s_tx:expr, server_pk: $s_pk:expr, server_sk: $s_sk:expr, client_pk: $c_pk:expr) => {
        $cs.kx_server_session_keys($s_rx, $s_tx, $s_pk, $s_sk, $c_pk)
    };
    ($cs:expr => server_rx: $s_rx:expr, server_tx: $s_tx:expr, server_pk: $s_pk:expr, server_sk: $s_sk:expr, client_pk: $c_pk:expr,) => {
        $cs.kx_server_session_keys($s_rx, $s_tx, $s_pk, $s_sk, $c_pk)
    };
}

/// syntactic sugar for named parameters to clarify buffer usage
/// # Example
///
/// ```compile_fail
/// aead_encrypt!(self.crypto =>
///     cipher: &mut cipher,
///     message: &message,
///     adata: Some(&adata),
///     nonce: &nonce,
///     secret: &secret,
/// ).unwrap();
/// ```
#[macro_export]
macro_rules! aead_encrypt {
    ($cs:expr => cipher: $c:expr, message: $m:expr, adata: $a:expr, nonce: $n:expr, secret: $s:expr) => {
        $cs.aead_encrypt($c, $m, $a, $n, $s)
    };
    ($cs:expr => cipher: $c:expr, message: $m:expr, adata: $a:expr, nonce: $n:expr, secret: $s:expr,) => {
        $cs.aead_encrypt($c, $m, $a, $n, $s)
    };
}

/// syntactic sugar for named parameters to clarify buffer usage
/// # Example
///
/// ```compile_fail
/// aead_decrypt!(self.crypto =>
///     message: &mut msg_out,
///     cipher: &cipher,
///     adata: Some(&adata),
///     nonce: &nonce,
///     secret: &secret,
/// ).unwrap();
/// ```
#[macro_export]
macro_rules! aead_decrypt {
    ($cs:expr => message: $m:expr, cipher: $c:expr, adata: $a:expr, nonce: $n:expr, secret: $s:expr) => {
        $cs.aead_decrypt($m, $c, $a, $n, $s)
    };
    ($cs:expr => message: $m:expr, cipher: $c:expr, adata: $a:expr, nonce: $n:expr, secret: $s:expr,) => {
        $cs.aead_decrypt($m, $c, $a, $n, $s)
    };
}

/// A trait describing a cryptographic system implementation compatible
/// with Lib3h and Holochain.
#[allow(clippy::borrowed_box)]
pub trait CryptoSystem: Sync + Send {
    /// Crypto System is designed to be used as a trait-object
    /// Since we can't get a sized clone, provide clone in a Box.
    fn box_clone(&self) -> Box<dyn CryptoSystem>;

    /// helps work around some sizing issues with rust trait-objects
    fn as_crypto_system(&self) -> &dyn CryptoSystem;

    /// create a new memory secured buffer
    /// that is compatible with this crypto system
    fn buf_new_secure(&self, size: usize) -> Box<dyn Buffer>;

    /// this is just a helper to create a
    /// sized boxed Vec<u8> as a Box<dyn Buffer>
    fn buf_new_insecure(&self, size: usize) -> Box<dyn Buffer> {
        Box::new(vec![0; size])
    }

    // -- random methods -- //

    /// fill all the bytes in the buffer with secure random data
    fn randombytes_buf(&self, buffer: &mut Box<dyn Buffer>) -> CryptoResult<()>;

    // -- derivation methods -- //

    /// bytelength of sha256 hash
    fn hash_sha256_bytes(&self) -> usize;

    /// bytelength of sha512 hash
    fn hash_sha512_bytes(&self) -> usize;

    /// compute a sha256 hash for `data`, storing it in `hash`
    fn hash_sha256(&self, hash: &mut Box<dyn Buffer>, data: &Box<dyn Buffer>) -> CryptoResult<()>;

    /// compute a sha512 hash for `data`, storing it in `hash`
    fn hash_sha512(&self, hash: &mut Box<dyn Buffer>, data: &Box<dyn Buffer>) -> CryptoResult<()>;

    /// min bytelength of generic hash output
    fn generic_hash_min_bytes(&self) -> usize;

    /// max bytelength of generic hash output
    fn generic_hash_max_bytes(&self) -> usize;

    /// min bytelength of generic hash key
    fn generic_hash_key_min_bytes(&self) -> usize;

    /// max bytelength of generic hash key
    fn generic_hash_key_max_bytes(&self) -> usize;

    /// compute a deterministic (BLAKE2b) generic hash for given data
    /// key can be `None`
    fn generic_hash(
        &self,
        hash: &mut Box<dyn Buffer>,
        data: &Box<dyn Buffer>,
        key: Option<&Box<dyn Buffer>>,
    ) -> CryptoResult<()>;

    /// bytelength of pwhash salt
    fn pwhash_salt_bytes(&self) -> usize;

    /// bytelength of pwhash
    fn pwhash_bytes(&self) -> usize;

    /// run a cpu/memory intensive password hash against password / salt
    fn pwhash(
        &self,
        hash: &mut Box<dyn Buffer>,
        password: &Box<dyn Buffer>,
        salt: &Box<dyn Buffer>,
    ) -> CryptoResult<()>;

    /// bytelength of parent key from which to derive
    fn kdf_key_bytes(&self) -> usize;

    /// bytelength of key derivation context
    fn kdf_context_bytes(&self) -> usize;

    /// minimum bytelength of key derivation buffers
    fn kdf_min_bytes(&self) -> usize;

    /// maximum bytelength of key derivation buffers
    fn kdf_max_bytes(&self) -> usize;

    /// derive a new deterministic key based of index, context, and parent
    fn kdf(
        &self,
        out_buffer: &mut Box<dyn Buffer>,
        index: u64,
        context: &Box<dyn Buffer>,
        parent: &Box<dyn Buffer>,
    ) -> CryptoResult<()>;

    // -- signature methods -- //

    /// bytelength of signature seed
    fn sign_seed_bytes(&self) -> usize;

    /// bytelength of signature public key
    fn sign_public_key_bytes(&self) -> usize;

    /// bytelength of signature secret key
    fn sign_secret_key_bytes(&self) -> usize;

    /// bytelength of a digital signature
    fn sign_bytes(&self) -> usize;

    /// generate a deterministic signature public / secret keypair
    /// based off the given seed entropy
    fn sign_seed_keypair(
        &self,
        seed: &Box<dyn Buffer>,
        public_key: &mut Box<dyn Buffer>,
        secret_key: &mut Box<dyn Buffer>,
    ) -> CryptoResult<()>;

    /// generate a pure entropy based signature public / secret keypair
    fn sign_keypair(
        &self,
        public_key: &mut Box<dyn Buffer>,
        secret_key: &mut Box<dyn Buffer>,
    ) -> CryptoResult<()>;

    /// generate a digital signature for `message` with the given secret key
    fn sign(
        &self,
        signature: &mut Box<dyn Buffer>,
        message: &Box<dyn Buffer>,
        secret_key: &Box<dyn Buffer>,
    ) -> CryptoResult<()>;

    /// verify that the digital `signature` is valid for given `message` and
    /// `public_key`
    fn sign_verify(
        &self,
        signature: &Box<dyn Buffer>,
        message: &Box<dyn Buffer>,
        public_key: &Box<dyn Buffer>,
    ) -> CryptoResult<bool>;

    // -- key exchange methods -- //

    /// bytelength of key exchange seed
    fn kx_seed_bytes(&self) -> usize;

    /// bytelength of key exchange public key
    fn kx_public_key_bytes(&self) -> usize;

    /// bytelength of key exchange secret key
    fn kx_secret_key_bytes(&self) -> usize;

    /// bytelength of session keys derived from key exchange
    fn kx_session_key_bytes(&self) -> usize;

    /// generate a deterministic key exchange public / secret keypair
    /// based off the given seed entropy
    fn kx_seed_keypair(
        &self,
        seed: &Box<dyn Buffer>,
        public_key: &mut Box<dyn Buffer>,
        secret_key: &mut Box<dyn Buffer>,
    ) -> CryptoResult<()>;

    /// generate a pure entropy based key exchange public / secret keypair
    fn kx_keypair(
        &self,
        public_key: &mut Box<dyn Buffer>,
        secret_key: &mut Box<dyn Buffer>,
    ) -> CryptoResult<()>;

    /// generate key exchange session keys from "client" perspective
    /// for named arguments for code clarity, consider using the macro:
    ///   kx_client_session_keys!
    fn kx_client_session_keys(
        &self,
        client_rx: &mut Box<dyn Buffer>,
        client_tx: &mut Box<dyn Buffer>,
        client_pk: &Box<dyn Buffer>,
        client_sk: &Box<dyn Buffer>,
        server_pk: &Box<dyn Buffer>,
    ) -> CryptoResult<()>;

    /// generate key exchange session keys from "server" perspective
    /// for named arguments for code clarity, consider using the macro:
    ///   kx_server_session_keys!
    fn kx_server_session_keys(
        &self,
        server_rx: &mut Box<dyn Buffer>,
        server_tx: &mut Box<dyn Buffer>,
        server_pk: &Box<dyn Buffer>,
        server_sk: &Box<dyn Buffer>,
        client_pk: &Box<dyn Buffer>,
    ) -> CryptoResult<()>;

    // -- aead encryption methods -- //

    /// bytelength of key exchange seed
    fn aead_nonce_bytes(&self) -> usize;

    /// bytelength of aead authentication tag
    fn aead_auth_bytes(&self) -> usize;

    /// bytelength of aead symmetric key
    fn aead_secret_bytes(&self) -> usize;

    /// encrypt `message` into buffer `cipher`
    /// for named arguments for code clarity, consider using the macro:
    ///   aead_encrypt!
    fn aead_encrypt(
        &self,
        cipher: &mut Box<dyn Buffer>,
        message: &Box<dyn Buffer>,
        adata: Option<&Box<dyn Buffer>>,
        nonce: &Box<dyn Buffer>,
        secret: &Box<dyn Buffer>,
    ) -> CryptoResult<()>;

    /// decrypt `cipher` into buffer `message`
    /// for named arguments for code clarity, consider using the macro:
    ///   aead_encrypt!
    fn aead_decrypt(
        &self,
        message: &mut Box<dyn Buffer>,
        cipher: &Box<dyn Buffer>,
        adata: Option<&Box<dyn Buffer>>,
        nonce: &Box<dyn Buffer>,
        secret: &Box<dyn Buffer>,
    ) -> CryptoResult<()>;
}

pub mod crypto_system_test;