Crate lgbm_sys

Source

Constants§

C_API_DTYPE_FLOAT32
C_API_DTYPE_FLOAT64
C_API_DTYPE_INT32
C_API_DTYPE_INT64
C_API_FEATURE_IMPORTANCE_GAIN
C_API_FEATURE_IMPORTANCE_SPLIT
C_API_MATRIX_TYPE_CSC
C_API_MATRIX_TYPE_CSR
C_API_PREDICT_CONTRIB
C_API_PREDICT_LEAF_INDEX
C_API_PREDICT_NORMAL
C_API_PREDICT_RAW_SCORE

Functions§

LGBM_BoosterAddValidData
Add new validation data to booster.
LGBM_BoosterCalcNumPredict
Get number of predictions.
LGBM_BoosterCreate
Create a new boosting learner.
LGBM_BoosterCreateFromModelfile
Load an existing booster from model file.
LGBM_BoosterDumpModel
Dump model to JSON.
LGBM_BoosterFeatureImportance
Get model feature importance.
LGBM_BoosterFree
Free space for booster.
LGBM_BoosterFreePredictSparse
Method corresponding to LGBM_BoosterPredictSparseOutput to free the allocated data.
LGBM_BoosterGetCurrentIteration
Get index of the current boosting iteration.
LGBM_BoosterGetEval
Get evaluation for training data and validation data.
LGBM_BoosterGetEvalCounts
Get number of evaluation metrics.
LGBM_BoosterGetEvalNames
Get names of evaluation metrics.
LGBM_BoosterGetFeatureNames
Get names of features.
LGBM_BoosterGetLeafValue
Get leaf value.
LGBM_BoosterGetLinear
Get int representing whether booster is fitting linear trees.
LGBM_BoosterGetLoadedParam
Get parameters as JSON string.
LGBM_BoosterGetLowerBoundValue
Get model lower bound value.
LGBM_BoosterGetNumClasses
Get number of classes.
LGBM_BoosterGetNumFeature
Get number of features.
LGBM_BoosterGetNumPredict
Get number of predictions for training data and validation data (this can be used to support customized evaluation functions).
LGBM_BoosterGetPredict
Get prediction for training data and validation data.
LGBM_BoosterGetUpperBoundValue
Get model upper bound value.
LGBM_BoosterLoadModelFromString
Load an existing booster from string.
LGBM_BoosterMerge
Merge model from other_handle into handle.
LGBM_BoosterNumModelPerIteration
Get number of trees per iteration.
LGBM_BoosterNumberOfTotalModel
Get number of weak sub-models.
LGBM_BoosterPredictForCSC
Make prediction for a new dataset in CSC format.
LGBM_BoosterPredictForCSR
Make prediction for a new dataset in CSR format.
LGBM_BoosterPredictForCSRSingleRow
Make prediction for a new dataset in CSR format. This method re-uses the internal predictor structure from previous calls and is optimized for single row invocation.
LGBM_BoosterPredictForCSRSingleRowFast
Faster variant of LGBM_BoosterPredictForCSRSingleRow.
LGBM_BoosterPredictForCSRSingleRowFastInit
Initialize and return a FastConfigHandle for use with LGBM_BoosterPredictForCSRSingleRowFast.
LGBM_BoosterPredictForFile
Make prediction for file.
LGBM_BoosterPredictForMat
Make prediction for a new dataset.
LGBM_BoosterPredictForMatSingleRow
Make prediction for a new dataset. This method re-uses the internal predictor structure from previous calls and is optimized for single row invocation.
LGBM_BoosterPredictForMatSingleRowFast
Faster variant of LGBM_BoosterPredictForMatSingleRow.
LGBM_BoosterPredictForMatSingleRowFastInit
Initialize and return a FastConfigHandle for use with LGBM_BoosterPredictForMatSingleRowFast.
LGBM_BoosterPredictForMats
Make prediction for a new dataset presented in a form of array of pointers to rows.
LGBM_BoosterPredictSparseOutput
Make sparse prediction for a new dataset in CSR or CSC format. Currently only used for feature contributions.
LGBM_BoosterRefit
Refit the tree model using the new data (online learning).
LGBM_BoosterResetParameter
Reset config for booster.
LGBM_BoosterResetTrainingData
Reset training data for booster.
LGBM_BoosterRollbackOneIter
Rollback one iteration.
LGBM_BoosterSaveModel
Save model into file.
LGBM_BoosterSaveModelToString
Save model to string.
LGBM_BoosterSetLeafValue
Set leaf value.
LGBM_BoosterShuffleModels
Shuffle models.
LGBM_BoosterUpdateOneIter
Update the model for one iteration.
LGBM_BoosterUpdateOneIterCustom
Update the model by specifying gradient and Hessian directly (this can be used to support customized loss functions).
LGBM_BoosterValidateFeatureNames
Check that the feature names of the data match the ones used to train the booster.
LGBM_ByteBufferFree
Free space for byte buffer.
LGBM_ByteBufferGetAt
Get a ByteBuffer value at an index.
LGBM_DatasetAddFeaturesFrom
Add features from source to target.
LGBM_DatasetCreateByReference
Allocate the space for dataset and bucket feature bins according to reference dataset.
LGBM_DatasetCreateFromCSC
Create a dataset from CSC format.
LGBM_DatasetCreateFromCSR
Create a dataset from CSR format.
LGBM_DatasetCreateFromCSRFunc
Create a dataset from CSR format through callbacks.
LGBM_DatasetCreateFromFile
Load dataset from file (like LightGBM CLI version does).
LGBM_DatasetCreateFromMat
Create dataset from dense matrix.
LGBM_DatasetCreateFromMats
Create dataset from array of dense matrices.
LGBM_DatasetCreateFromSampledColumn
Allocate the space for dataset and bucket feature bins according to sampled data.
LGBM_DatasetCreateFromSerializedReference
Allocate the space for dataset and bucket feature bins according to serialized reference dataset.
LGBM_DatasetDumpText
Save dataset to text file, intended for debugging use only.
LGBM_DatasetFree
Free space for dataset.
LGBM_DatasetGetFeatureNames
Get feature names of dataset.
LGBM_DatasetGetFeatureNumBin
Get number of bins for feature.
LGBM_DatasetGetField
Get info vector from dataset.
LGBM_DatasetGetNumData
Get number of data points.
LGBM_DatasetGetNumFeature
Get number of features.
LGBM_DatasetGetSubset
Create subset of a data.
LGBM_DatasetInitStreaming
Initialize the Dataset for streaming.
LGBM_DatasetMarkFinished
Mark the Dataset as complete by calling dataset->FinishLoad.
LGBM_DatasetPushRows
Push data to existing dataset, if nrow + start_row == num_total_row, will call dataset->FinishLoad.
LGBM_DatasetPushRowsByCSR
Push data to existing dataset, if nrow + start_row == num_total_row, will call dataset->FinishLoad.
LGBM_DatasetPushRowsByCSRWithMetadata
Push CSR data to existing dataset. (See LGBM_DatasetPushRowsWithMetadata for more details.)
LGBM_DatasetPushRowsWithMetadata
Push data to existing dataset. The general flow for a streaming scenario is:
LGBM_DatasetSaveBinary
Save dataset to binary file.
LGBM_DatasetSerializeReferenceToBinary
Create a dataset schema representation as a binary byte array (excluding data).
LGBM_DatasetSetFeatureNames
Save feature names to dataset.
LGBM_DatasetSetField
Set vector to a content in info.
LGBM_DatasetSetWaitForManualFinish
Set whether or not the Dataset waits for a manual MarkFinished call or calls FinishLoad on itself automatically. Set to 1 for streaming scenario, and use LGBM_DatasetMarkFinished to manually finish the Dataset.
LGBM_DatasetUpdateParamChecking
Raise errors for attempts to update dataset parameters.
LGBM_DumpParamAliases
Dump all parameter names with their aliases to JSON.
LGBM_FastConfigFree
Release FastConfig object.
LGBM_GetLastError
Get string message of the last error.
LGBM_GetSampleCount
Get number of samples based on parameters and total number of rows of data.
LGBM_NetworkFree
Finalize the network.
LGBM_NetworkInit
Initialize the network.
LGBM_NetworkInitWithFunctions
Initialize the network with external collective functions.
LGBM_RegisterLogCallback
Register a callback function for log redirecting.
LGBM_SampleIndices
Create sample indices for total number of rows.
LGBM_SetLastError
Set string message of the last error.

Type Aliases§

BoosterHandle
ByteBufferHandle
DatasetHandle
FastConfigHandle