1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
use crate::FuturesTypes;
use serde::{Deserialize, Serialize};

#[derive(Debug, Clone, Copy, Default, Serialize, Deserialize)]
/// Describes the position information of the account
pub struct Position {
    /// The position size
    /// denoted in BASE currency if using linear futures,
    /// denoted in QUOTE currency if using inverse futures
    size: f64,
    /// The entry price of the position
    entry_price: f64,
    /// The current position leverage
    leverage: f64,
    /// The currently unrealized profit and loss
    unrealized_pnl: f64,
}

impl Position {
    /// Create a new, initially neutral, position with a given leverage
    /// # Panics
    /// In debug mode, if leverage is smaller than 1.0
    #[must_use]
    #[inline]
    pub fn new_init(leverage: f64) -> Self {
        debug_assert!(leverage >= 1.0);
        Position {
            size: 0.0,
            entry_price: 0.0,
            leverage,
            unrealized_pnl: 0.0,
        }
    }

    /// Create a new position with all fields custom.
    /// NOTE: not usually called, but for advanced use cases
    /// # Panics
    /// In debug mode, if inputs don't make sense
    #[must_use]
    #[inline]
    pub fn new(size: f64, entry_price: f64, leverage: f64, unrealized_pnl: f64) -> Self {
        debug_assert!(size.is_finite());
        debug_assert!(entry_price.is_finite());
        debug_assert!(leverage.is_finite());
        debug_assert!(unrealized_pnl.is_finite());

        debug_assert!(leverage >= 1.0);
        debug_assert!(entry_price >= 0.0);

        Position {
            size,
            entry_price,
            leverage,
            unrealized_pnl,
        }
    }

    /// Return the position size
    /// denoted in BASE currency if using linear futures,
    /// denoted in QUOTE currency if using inverse futures
    #[inline(always)]
    pub fn size(&self) -> f64 {
        self.size
    }

    /// Return the entry price of the position
    #[inline(always)]
    pub fn entry_price(&self) -> f64 {
        self.entry_price
    }

    /// Return the positions leverage
    #[inline(always)]
    pub fn leverage(&self) -> f64 {
        self.leverage
    }

    /// Return the positions unrealized profit and loss
    /// denoted in QUOTE when using linear futures,
    /// denoted in BASE when using inverse futures
    #[inline(always)]
    pub fn unrealized_pnl(&self) -> f64 {
        self.unrealized_pnl
    }

    /// Change the position size by a given delta at a certain price
    pub(crate) fn change_size(&mut self, size_delta: f64, price: f64, futures_type: FuturesTypes) {
        debug!("change_size({}, {}, {})", size_delta, price, futures_type);

        debug_assert!(price > 0.0);

        if self.size > 0.0 {
            if self.size + size_delta < 0.0 {
                // counts as new position as all old position size is sold
                self.entry_price = price;
            } else if (self.size + size_delta).abs() > self.size {
                self.entry_price = ((self.size.abs() * self.entry_price)
                    + (size_delta.abs() * price))
                    / (self.size.abs() + size_delta.abs());
            }
        } else if self.size < 0.0 {
            if self.size + size_delta > 0.0 {
                self.entry_price = price;
            } else if self.size + size_delta < self.size {
                self.entry_price = ((self.size.abs() * self.entry_price)
                    + (size_delta.abs() * price))
                    / (self.size.abs() + size_delta.abs());
            }
        } else {
            self.entry_price = price;
        }
        self.size += size_delta;

        self.update_state(price, futures_type);
    }

    /// Update the state to reflect price changes
    #[inline]
    pub(crate) fn update_state(&mut self, price: f64, futures_type: FuturesTypes) {
        self.unrealized_pnl = if self.size != 0.0 {
            futures_type.pnl(self.entry_price, price, self.size)
        } else {
            0.0
        };
    }
}

#[cfg(test)]
mod tests {
    use super::*;
    use crate::round;

    #[test]
    fn position_change_size() {
        let mut pos = Position::new_init(1.0);
        let futures_type = FuturesTypes::Inverse;

        pos.change_size(100.0, 100.0, futures_type);
        assert_eq!(pos.size, 100.0);
        assert_eq!(pos.entry_price, 100.0);
        assert_eq!(pos.leverage, 1.0);
        assert_eq!(pos.unrealized_pnl, 0.0);

        pos.change_size(-50.0, 150.0, futures_type);
        assert_eq!(pos.size, 50.0);
        assert_eq!(pos.entry_price, 100.0);
        assert_eq!(pos.leverage, 1.0);
        assert_eq!(round(pos.unrealized_pnl, 2), 0.17);

        pos.change_size(50.0, 150.0, futures_type);
        assert_eq!(pos.size, 100.0);
        assert_eq!(pos.entry_price, 125.0);
        assert_eq!(pos.leverage, 1.0);
        assert_eq!(round(pos.unrealized_pnl, 2), 0.13);

        pos.change_size(-150.0, 150.0, futures_type);
        assert_eq!(pos.size, -50.0);
        assert_eq!(pos.entry_price, 150.0);
        assert_eq!(pos.leverage, 1.0);
        assert_eq!(pos.unrealized_pnl, 0.0);

        pos.change_size(50.0, 150.0, futures_type);
        assert_eq!(pos.size, 0.0);
        assert_eq!(pos.entry_price, 150.0);
        assert_eq!(pos.leverage, 1.0);
        assert_eq!(pos.unrealized_pnl, 0.0);
    }

    #[test]
    fn position_update_state_inverse_futures() {
        let mut pos = Position::new(100.0, 100.0, 1.0, 0.0);
        pos.update_state(110.0, FuturesTypes::Inverse);

        assert_eq!(round(pos.unrealized_pnl, 2), 0.09);
    }

    #[test]
    fn position_update_state_linear_futures() {
        let mut pos = Position::new(1.0, 100.0, 1.0, 0.0);
        pos.update_state(110.0, FuturesTypes::Linear);

        assert_eq!(round(pos.unrealized_pnl, 2), 10.0);
    }
}