1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
//! S-expression parser and options.
//!
//! # Terminology
//!
//! The process of converting S-expressions from their textual representation to
//! values is referred to "reading" in Lisp. To avoid confusion with Rust's
//! `Write` trait, `lexpr` uses "parsing" instead.

use std::borrow::Borrow;
use std::io;
use std::str;
use std::u64;

use crate::error::{Error, ErrorCode};
use crate::read::{self, Reference};
pub use crate::style::KeywordStyle;
use crate::{Number, Result, Value};

pub use read::{IoRead, Read, SliceRead, StrRead};

/// Parser for the S-expression text representation.
///
/// This type, given a input source, provides the [`parse`] method,
/// which can be used to read a single S-expression from the input
/// source.
///
/// [`parse`]: struct.Parser.html#method.parse
pub struct Parser<R> {
    read: R,
    scratch: Vec<u8>,
    remaining_depth: u8,
    options: Options,
}

/// Various options to influence parser behavior.
#[derive(Debug, Clone)]
pub struct Options {
    keyword_styles: u8,
    nil_symbol: NilSymbol,
    t_symbol: TSymbol,
}

/// Defines the handling of the symbol `nil`.
#[derive(Debug, Copy, Clone, PartialEq)]
pub enum NilSymbol {
    /// Parse `nil` like as the empty list. This the behavior of Emacs
    /// Lisp and Common Lisp.
    ///
    /// In the parsed `Value`, the empty list, written as `()` and the
    /// empty list, written as `nil` are both represented by the
    /// `Value::List` variant with zero elements.
    EmptyList,

    /// Parse `nil` as a regular symbol. This is the behavior found in
    /// Scheme.
    ///
    /// The parsed `Value` will be equal to `Value::symbol("nil")`.
    Default,

    /// Parse `nil` as a special atom. This allows treating the `nil`
    /// symbol specially when processing the parsed data.
    ///
    /// The parsed `Value` will be equal to `Value::nil()`.
    Special,
}

/// Defines the handling of the symbol `t`.
#[derive(Debug, Copy, Clone, PartialEq)]
pub enum TSymbol {
    /// Parse `t` as the boolean true value.
    True,

    /// Parse `t` as a regular symbol.
    Default,
}

impl Options {
    /// Construct an empty set of options.
    ///
    /// This will recognize no keywords, and parse `nil` and `t` as
    /// regular symbols.
    pub fn new() -> Self {
        Options {
            keyword_styles: 0,
            nil_symbol: NilSymbol::Default,
            t_symbol: TSymbol::Default,
        }
    }

    /// Construct a set of options suitable for parsing Emacs Lisp.
    pub fn elisp() -> Self {
        Self::new()
            .with_keyword_style(KeywordStyle::ColonPrefix)
            .with_nil_symbol(NilSymbol::EmptyList)
    }

    /// Add `style` to the recognized keyword styles.
    pub fn with_keyword_style(mut self, style: KeywordStyle) -> Self {
        self.keyword_styles |= style.to_flag();
        self
    }

    /// Set the recognized keyword styles.
    pub fn with_keyword_styles<I, T>(mut self, styles: I) -> Self
    where
        I: IntoIterator<Item = T>,
        T: Borrow<KeywordStyle>,
    {
        self.keyword_styles = styles
            .into_iter()
            .fold(0, |flags, style| flags | style.borrow().to_flag());
        self
    }

    /// Choose how to parse the `nil` symbol.
    pub fn with_nil_symbol(mut self, handling: NilSymbol) -> Self {
        self.nil_symbol = handling;
        self
    }

    /// Choose how to parse the `t` symbol.
    pub fn with_t_symbol(mut self, handling: TSymbol) -> Self {
        self.t_symbol = handling;
        self
    }

    /// Check wether a keyword style is enabled.
    #[inline]
    pub fn keyword_style(&self, style: KeywordStyle) -> bool {
        (self.keyword_styles & style.to_flag()) != 0
    }

    /// Query the way the `nil` symbol is handled.
    pub fn nil_symbol(&self) -> NilSymbol {
        self.nil_symbol
    }

    /// Query the way the `t` symbol is handled.
    pub fn t_symbol(&self) -> TSymbol {
        self.t_symbol
    }
}

impl Default for Options {
    /// Construct a default set of options. This corresponds most
    /// closely to the Scheme dialect of S-expressions:
    ///
    /// - The identifiers `nil` and `t` are treated as regular symbols.
    /// - Only octothorpe keywords are recognized.
    fn default() -> Self {
        Options {
            keyword_styles: KeywordStyle::Octothorpe.to_flag(),
            nil_symbol: NilSymbol::Default,
            t_symbol: TSymbol::Default,
        }
    }
}

impl<'de, R> Parser<R>
where
    R: read::Read<'de>,
{
    /// Create an S-expression parser from one of the possible sexpr
    /// input sources.
    ///
    /// Typically it is more convenient to use one of these methods
    /// instead:
    ///
    ///   - `Parser::from_str`
    ///   - `Parser::from_slice`
    ///   - `Parser::from_reader`
    pub fn new(read: R) -> Self {
        Parser {
            read,
            scratch: Vec::with_capacity(128),
            remaining_depth: 128,
            options: Options::default(),
        }
    }

    /// Create a customized S-expression parser parser from one of the possible sexpr
    /// input sources.
    ///
    /// Typically it is more convenient to use one of these methods
    /// instead:
    ///
    ///   - `Parser::from_str_custom`
    ///   - `Parser::from_slice_custom`
    ///   - `Parser::from_reader_custom`
    pub fn with_options(read: R, options: Options) -> Self {
        Parser {
            read,
            scratch: Vec::with_capacity(128),
            remaining_depth: 128,
            options,
        }
    }
}

impl<R> Parser<read::IoRead<R>>
where
    R: io::Read,
{
    /// Creates an S-expression parser from an `io::Read`.
    pub fn from_reader(reader: R) -> Self {
        Parser::new(read::IoRead::new(reader))
    }

    /// Creates an S-expression parser from an `io::Read`.
    pub fn from_reader_custom(reader: R, options: Options) -> Self {
        Parser::with_options(read::IoRead::new(reader), options)
    }
}

impl<'a> Parser<read::SliceRead<'a>> {
    /// Creates an S-expression parser from a `&[u8]`.
    pub fn from_slice(bytes: &'a [u8]) -> Self {
        Parser::new(read::SliceRead::new(bytes))
    }

    /// Creates an S-expression parser from a `&[u8]`.
    pub fn from_slice_custom(bytes: &'a [u8], options: Options) -> Self {
        Parser::with_options(read::SliceRead::new(bytes), options)
    }
}

impl<'a> Parser<read::StrRead<'a>> {
    /// Creates a S-expression parser from a `&str`.
    #[allow(clippy::should_implement_trait)]
    pub fn from_str(s: &'a str) -> Self {
        Parser::new(read::StrRead::new(s))
    }

    /// Creates a S-expression parser from a `&str`.
    #[allow(clippy::should_implement_trait)]
    pub fn from_str_custom(s: &'a str, options: Options) -> Self {
        Parser::with_options(read::StrRead::new(s), options)
    }
}

macro_rules! overflow {
    ($a:ident * 10 + $b:ident, $c:expr) => {
        $a >= $c / 10 && ($a > $c / 10 || $b > $c % 10)
    };
}

impl<'de, R: Read<'de>> Parser<R> {
    /// The `Parser::end` method should be called after a value has been fully
    /// parsed.  This allows the `Parser` to validate that the input stream is
    /// at the end or that it only has trailing whitespace.
    pub fn end(&mut self) -> Result<()> {
        match self.parse_whitespace()? {
            Some(_) => Err(self.peek_error(ErrorCode::TrailingCharacters)),
            None => Ok(()),
        }
    }

    fn peek(&mut self) -> Result<Option<u8>> {
        self.read.peek()
    }

    fn peek_or_null(&mut self) -> Result<u8> {
        Ok(self.peek()?.unwrap_or(b'\x00'))
    }

    fn eat_char(&mut self) {
        self.read.discard();
    }

    fn next_char(&mut self) -> Result<Option<u8>> {
        self.read.next()
    }

    fn next_char_or_null(&mut self) -> Result<u8> {
        Ok(self.next_char()?.unwrap_or(b'\x00'))
    }

    /// Error caused by a byte from next_char().
    fn error(&mut self, reason: ErrorCode) -> Error {
        let pos = self.read.position();
        Error::syntax(reason, pos.line, pos.column)
    }

    /// Error caused by a byte from peek().
    fn peek_error(&mut self, reason: ErrorCode) -> Error {
        let pos = self.read.peek_position();
        Error::syntax(reason, pos.line, pos.column)
    }

    /// Returns the first non-whitespace byte without consuming it, or `None` if
    /// EOF is encountered.
    fn parse_whitespace(&mut self) -> Result<Option<u8>> {
        loop {
            match self.peek()? {
                Some(b' ') | Some(b'\n') | Some(b'\t') | Some(b'\r') => {
                    self.eat_char();
                }
                other => {
                    return Ok(other);
                }
            }
        }
    }

    /// Parse a single S-expression from the input source.
    ///
    /// This expects an S-expression value to be actually present, and
    /// returns an `Err` when called at the end of input. Use
    /// `Parser::parse` if you need to handle end of input gracefully.
    ///
    /// ```
    /// # use lexpr::{sexp, parse, Parser};
    /// let mut parser = Parser::from_str(r#"foo ("bar" . 3.14) #:baz (1 2 3)"#);
    /// assert_eq!(parser.parse_value().unwrap(), sexp!(foo));
    /// assert_eq!(parser.parse_value().unwrap(), sexp!(("bar" . 3.14)));
    /// assert_eq!(parser.parse_value().unwrap(), sexp!(#:baz));
    /// assert_eq!(parser.parse_value().unwrap(), sexp!((1 2 3)));
    /// assert!(parser.end().is_ok());
    /// ```
    pub fn parse_value(&mut self) -> Result<Value> {
        self.parse()
            .and_then(|o| o.ok_or_else(|| self.peek_error(ErrorCode::EofWhileParsingValue)))
    }

    /// Parse a single S-expression from the input source.
    ///
    /// If the end of input is ecountered, this will return
    /// `Ok(None)`, otherwise, if parsing suceeded, `Ok(Some(Value))`.
    ///
    /// ```
    /// # use lexpr::{sexp, parse, Parser};
    /// let mut parser = Parser::from_str(r#"foo ("bar" . 3.14) #:baz (1 2 3)"#);
    /// assert_eq!(parser.parse().unwrap(), Some(sexp!(foo)));
    /// assert_eq!(parser.parse().unwrap(), Some(sexp!(("bar" . 3.14))));
    /// assert_eq!(parser.parse().unwrap(), Some(sexp!(#:baz)));
    /// assert_eq!(parser.parse().unwrap(), Some(sexp!((1 2 3))));
    /// assert_eq!(parser.parse().unwrap(), None);
    /// ```
    pub fn parse(&mut self) -> Result<Option<Value>> {
        let peek = match self.parse_whitespace()? {
            Some(b) => b,
            None => return Ok(None),
        };

        let value = match peek {
            b'#' => {
                self.eat_char();
                match self.next_char()? {
                    Some(b't') => Ok(Value::from(true)),
                    Some(b'f') => Ok(Value::from(false)),
                    Some(b'n') => {
                        self.expect_ident(b"il")?;
                        Ok(Value::nil())
                    }
                    Some(b':') if self.options.keyword_style(KeywordStyle::Octothorpe) => {
                        Ok(Value::keyword(self.parse_symbol()?))
                    }
                    Some(_) => Err(self.peek_error(ErrorCode::ExpectedSomeIdent)),
                    None => Err(self.peek_error(ErrorCode::EofWhileParsingValue)),
                }
            }
            b'-' => {
                // FIXME: might be a symbol instead
                self.eat_char();
                Ok(Value::from(self.parse_integer(false)?))
            }
            b'0'...b'9' => Ok(Value::from(self.parse_integer(true)?)),
            b'"' => {
                self.eat_char();
                self.scratch.clear();
                match self.read.parse_str(&mut self.scratch)? {
                    Reference::Borrowed(s) => Ok(Value::from(s)),
                    Reference::Copied(s) => Ok(Value::from(s)),
                }
            }
            b'(' => {
                self.remaining_depth -= 1;
                if self.remaining_depth == 0 {
                    return Err(self.peek_error(ErrorCode::RecursionLimitExceeded));
                }

                self.eat_char();
                let ret = self.parse_list_elements();

                self.remaining_depth += 1;

                match (ret, self.end_seq()) {
                    (Ok(ret), Ok(())) => Ok(ret),
                    (Err(err), _) | (_, Err(err)) => Err(err),
                }
            }
            b':' => {
                if self.options.keyword_style(KeywordStyle::ColonPrefix) {
                    self.eat_char();
                    Ok(Value::keyword(self.parse_symbol()?))
                } else {
                    Ok(Value::symbol(self.parse_symbol()?))
                }
            }
            b'a'...b'z' | b'A'...b'Z' => {
                let mut name = self.parse_symbol()?;
                if self.options.keyword_style(KeywordStyle::ColonPostfix) && name.ends_with(':') {
                    name.pop();
                    Ok(Value::keyword(name))
                } else if self.options.nil_symbol() != NilSymbol::Default && name == "nil" {
                    match self.options.nil_symbol() {
                        NilSymbol::EmptyList => Ok(Value::empty_list()),
                        NilSymbol::Special => Ok(Value::nil()),
                        NilSymbol::Default => unreachable!(),
                    }
                } else if self.options.t_symbol() != TSymbol::Default && name == "t" {
                    match self.options.t_symbol() {
                        TSymbol::True => Ok(Value::from(true)),
                        TSymbol::Default => unreachable!(),
                    }
                } else {
                    Ok(Value::symbol(name))
                }
            }
            _ => {
                if SYMBOL_EXTENDED.contains(&peek) {
                    Ok(Value::symbol(self.parse_symbol()?))
                } else {
                    Err(self.peek_error(ErrorCode::ExpectedSomeValue))
                }
            }
        };

        match value {
            Ok(value) => Ok(Some(value)),
            // The de::Error and From<de::value::Error> impls both create errors
            // with unknown line and column. Fill in the position here by
            // looking at the current index in the input. There is no way to
            // tell whether this should call `error` or `peek_error` so pick the
            // one that seems correct more often. Worst case, the position is
            // off by one character.
            Err(err) => Err(err.fix_position(|code| self.error(code))),
        }
    }

    fn parse_symbol(&mut self) -> Result<String> {
        self.scratch.clear();
        match self.read.parse_symbol(&mut self.scratch)? {
            Reference::Borrowed(s) => Ok(s.into()),
            Reference::Copied(s) => Ok(s.into()),
        }
    }

    fn expect_ident(&mut self, ident: &[u8]) -> Result<()> {
        for c in ident {
            if Some(*c) != self.next_char()? {
                return Err(self.error(ErrorCode::ExpectedSomeIdent));
            }
        }

        Ok(())
    }

    fn parse_list_elements(&mut self) -> Result<Value> {
        fn form_list(mut list: Vec<Value>, tail: Value) -> Value {
            match tail {
                Value::Atom(atom) => Value::ImproperList(list, atom),
                Value::List(rest_list) => {
                    list.extend(rest_list);
                    Value::List(list)
                }
                Value::ImproperList(rest_list, rest) => {
                    list.extend(rest_list);
                    Value::ImproperList(list, rest)
                }
            }
        }
        let mut list = Vec::new();
        loop {
            match self.parse_whitespace() {
                Err(e) => return Err(e),
                Ok(Some(c)) => match c {
                    b')' => return Ok(Value::List(list)),
                    b'.' => {
                        self.eat_char();
                        let tail = self.parse_value()?;
                        match self.parse_whitespace()? {
                            Some(b')') => return Ok(form_list(list, tail)),
                            Some(_) => return Err(self.peek_error(ErrorCode::TrailingCharacters)),
                            None => return Err(self.peek_error(ErrorCode::EofWhileParsingList)),
                        }
                    }
                    _ => list.push(self.parse_value()?),
                },
                Ok(None) => return Err(self.peek_error(ErrorCode::EofWhileParsingList)),
            }
        }
    }

    fn parse_integer(&mut self, pos: bool) -> Result<Number> {
        match self.next_char_or_null()? {
            b'0' => {
                // There can be only one leading '0'.
                match self.peek_or_null()? {
                    b'0'...b'9' => Err(self.peek_error(ErrorCode::InvalidNumber)),
                    _ => self.parse_number(pos, 0),
                }
            }
            c @ b'1'...b'9' => {
                let mut res = u64::from(c - b'0');

                loop {
                    match self.peek_or_null()? {
                        c @ b'0'...b'9' => {
                            self.eat_char();
                            let digit = u64::from(c - b'0');

                            // We need to be careful with overflow. If we can, try to keep the
                            // number as a `u64` until we grow too large. At that point, switch to
                            // parsing the value as a `f64`.
                            if overflow!(res * 10 + digit, u64::MAX) {
                                return Ok(Number::from(self.parse_long_integer(
                                    pos, res, 1, // res * 10^1
                                )?));
                            }

                            res = res * 10 + digit;
                        }
                        _ => {
                            return self.parse_number(pos, res);
                        }
                    }
                }
            }
            _ => Err(self.error(ErrorCode::InvalidNumber)),
        }
    }

    fn parse_long_integer(
        &mut self,
        pos: bool,
        significand: u64,
        mut exponent: i32,
    ) -> Result<f64> {
        loop {
            match self.peek_or_null()? {
                b'0'...b'9' => {
                    self.eat_char();
                    // This could overflow... if your integer is gigabytes long.
                    // Ignore that possibility.
                    exponent += 1;
                }
                b'.' => {
                    return self.parse_decimal(pos, significand, exponent);
                }
                b'e' | b'E' => {
                    return self.parse_exponent(pos, significand, exponent);
                }
                _ => {
                    return self.f64_from_parts(pos, significand, exponent);
                }
            }
        }
    }

    fn parse_number(&mut self, pos: bool, significand: u64) -> Result<Number> {
        Ok(match self.peek_or_null()? {
            b'.' => Number::from(self.parse_decimal(pos, significand, 0)?),
            b'e' | b'E' => Number::from(self.parse_exponent(pos, significand, 0)?),
            _ => {
                if pos {
                    Number::from(significand)
                } else {
                    let neg = (significand as i64).wrapping_neg();

                    // Convert into a float if we underflow.
                    if neg > 0 {
                        Number::from(-(significand as f64))
                    } else {
                        Number::from(neg)
                    }
                }
            }
        })
    }

    fn parse_decimal(&mut self, pos: bool, mut significand: u64, mut exponent: i32) -> Result<f64> {
        self.eat_char();

        let mut at_least_one_digit = false;
        while let c @ b'0'...b'9' = self.peek_or_null()? {
            self.eat_char();
            let digit = u64::from(c - b'0');
            at_least_one_digit = true;

            if overflow!(significand * 10 + digit, u64::MAX) {
                // The next multiply/add would overflow, so just ignore all
                // further digits.
                while let b'0'...b'9' = self.peek_or_null()? {
                    self.eat_char();
                }
                break;
            }

            significand = significand * 10 + digit;
            exponent -= 1;
        }

        if !at_least_one_digit {
            return Err(self.peek_error(ErrorCode::InvalidNumber));
        }

        match self.peek_or_null()? {
            b'e' | b'E' => self.parse_exponent(pos, significand, exponent),
            _ => self.f64_from_parts(pos, significand, exponent),
        }
    }

    fn parse_exponent(
        &mut self,
        positive: bool,
        significand: u64,
        starting_exp: i32,
    ) -> Result<f64> {
        self.eat_char();

        let positive_exp = match self.peek_or_null()? {
            b'+' => {
                self.eat_char();
                true
            }
            b'-' => {
                self.eat_char();
                false
            }
            _ => true,
        };

        // Make sure a digit follows the exponent place.
        let mut exp = match self.next_char_or_null()? {
            c @ b'0'...b'9' => i32::from(c - b'0'),
            _ => {
                return Err(self.error(ErrorCode::InvalidNumber));
            }
        };

        while let c @ b'0'...b'9' = self.peek_or_null()? {
            self.eat_char();
            let digit = i32::from(c - b'0');

            if overflow!(exp * 10 + digit, i32::max_value()) {
                return self.parse_exponent_overflow(positive, significand, positive_exp);
            }

            exp = exp * 10 + digit;
        }

        let final_exp = if positive_exp {
            starting_exp.saturating_add(exp)
        } else {
            starting_exp.saturating_sub(exp)
        };

        self.f64_from_parts(positive, significand, final_exp)
    }

    // This cold code should not be inlined into the middle of the hot
    // exponent-parsing loop above.
    #[cold]
    #[inline(never)]
    fn parse_exponent_overflow(
        &mut self,
        positive: bool,
        significand: u64,
        positive_exp: bool,
    ) -> Result<f64> {
        // Error instead of +/- infinity.
        if significand != 0 && positive_exp {
            return Err(self.error(ErrorCode::NumberOutOfRange));
        }

        while let b'0'...b'9' = self.peek_or_null()? {
            self.eat_char();
        }
        Ok(if positive { 0.0 } else { -0.0 })
    }

    #[cfg(not(feature = "fast-float-parsing"))]
    fn f64_from_parts(&mut self, pos: bool, significand: u64, exponent: i32) -> Result<f64> {
        // Slow path -- in the `fast-float-parsing` variant, we
        // potentially lose digits by casting `significand` (which is
        // may exceeds 52 bits) to `f64`, as well as by the divisions
        // in there, so we when `fast-float-parsing` is disabled, we
        // delegate floating number parsing to the standard
        // library. Note that this code path is more than 3 orders of
        // magnitude slower.
        self.scratch.clear();
        itoa::write(&mut self.scratch, significand).unwrap();
        self.scratch.push(b'e');
        itoa::write(&mut self.scratch, exponent).unwrap();
        // Unsafe should be OK here, as `itoa::write()` should
        // never produce non-ASCII output.
        let f: f64 = unsafe { str::from_utf8_unchecked(&self.scratch) }
            .parse()
            .map_err(|_| self.error(ErrorCode::NumberOutOfRange))?;
        if !pos {
            return Ok(f * -1.0);
        }
        return Ok(f);
    }

    #[cfg(feature = "fast-float-parsing")]
    fn f64_from_parts(&mut self, pos: bool, significand: u64, mut exponent: i32) -> Result<f64> {
        let mut f = significand as f64;
        loop {
            match POW10.get(exponent.abs() as usize) {
                Some(&pow) => {
                    if exponent >= 0 {
                        f *= pow;
                        if f.is_infinite() {
                            return Err(self.error(ErrorCode::NumberOutOfRange));
                        }
                    } else {
                        f /= pow;
                    }
                    break;
                }
                None => {
                    if f == 0.0 {
                        break;
                    }
                    if exponent >= 0 {
                        return Err(self.error(ErrorCode::NumberOutOfRange));
                    }
                    f /= 1e308;
                    exponent += 308;
                }
            }
        }
        Ok(if pos { f } else { -f })
    }

    fn end_seq(&mut self) -> Result<()> {
        match self.parse_whitespace()? {
            Some(b')') => {
                self.eat_char();
                Ok(())
            }
            Some(_) => Err(self.peek_error(ErrorCode::TrailingCharacters)),
            None => Err(self.peek_error(ErrorCode::EofWhileParsingList)),
        }
    }
}

const SYMBOL_EXTENDED: [u8; 17] = [
    b'!', b'$', b'%', b'&', b'*', b'+', /* | b'-' FIXME, */ b'.', b'/', b':', b'<', b'=',
    b'>', b'?', b'@', b'^', b'_', b'~',
];

#[cfg(feature = "fast-float-parsing")]
#[rustfmt::skip]
static POW10: [f64; 309] =
    [1e000, 1e001, 1e002, 1e003, 1e004, 1e005, 1e006, 1e007, 1e008, 1e009,
     1e010, 1e011, 1e012, 1e013, 1e014, 1e015, 1e016, 1e017, 1e018, 1e019,
     1e020, 1e021, 1e022, 1e023, 1e024, 1e025, 1e026, 1e027, 1e028, 1e029,
     1e030, 1e031, 1e032, 1e033, 1e034, 1e035, 1e036, 1e037, 1e038, 1e039,
     1e040, 1e041, 1e042, 1e043, 1e044, 1e045, 1e046, 1e047, 1e048, 1e049,
     1e050, 1e051, 1e052, 1e053, 1e054, 1e055, 1e056, 1e057, 1e058, 1e059,
     1e060, 1e061, 1e062, 1e063, 1e064, 1e065, 1e066, 1e067, 1e068, 1e069,
     1e070, 1e071, 1e072, 1e073, 1e074, 1e075, 1e076, 1e077, 1e078, 1e079,
     1e080, 1e081, 1e082, 1e083, 1e084, 1e085, 1e086, 1e087, 1e088, 1e089,
     1e090, 1e091, 1e092, 1e093, 1e094, 1e095, 1e096, 1e097, 1e098, 1e099,
     1e100, 1e101, 1e102, 1e103, 1e104, 1e105, 1e106, 1e107, 1e108, 1e109,
     1e110, 1e111, 1e112, 1e113, 1e114, 1e115, 1e116, 1e117, 1e118, 1e119,
     1e120, 1e121, 1e122, 1e123, 1e124, 1e125, 1e126, 1e127, 1e128, 1e129,
     1e130, 1e131, 1e132, 1e133, 1e134, 1e135, 1e136, 1e137, 1e138, 1e139,
     1e140, 1e141, 1e142, 1e143, 1e144, 1e145, 1e146, 1e147, 1e148, 1e149,
     1e150, 1e151, 1e152, 1e153, 1e154, 1e155, 1e156, 1e157, 1e158, 1e159,
     1e160, 1e161, 1e162, 1e163, 1e164, 1e165, 1e166, 1e167, 1e168, 1e169,
     1e170, 1e171, 1e172, 1e173, 1e174, 1e175, 1e176, 1e177, 1e178, 1e179,
     1e180, 1e181, 1e182, 1e183, 1e184, 1e185, 1e186, 1e187, 1e188, 1e189,
     1e190, 1e191, 1e192, 1e193, 1e194, 1e195, 1e196, 1e197, 1e198, 1e199,
     1e200, 1e201, 1e202, 1e203, 1e204, 1e205, 1e206, 1e207, 1e208, 1e209,
     1e210, 1e211, 1e212, 1e213, 1e214, 1e215, 1e216, 1e217, 1e218, 1e219,
     1e220, 1e221, 1e222, 1e223, 1e224, 1e225, 1e226, 1e227, 1e228, 1e229,
     1e230, 1e231, 1e232, 1e233, 1e234, 1e235, 1e236, 1e237, 1e238, 1e239,
     1e240, 1e241, 1e242, 1e243, 1e244, 1e245, 1e246, 1e247, 1e248, 1e249,
     1e250, 1e251, 1e252, 1e253, 1e254, 1e255, 1e256, 1e257, 1e258, 1e259,
     1e260, 1e261, 1e262, 1e263, 1e264, 1e265, 1e266, 1e267, 1e268, 1e269,
     1e270, 1e271, 1e272, 1e273, 1e274, 1e275, 1e276, 1e277, 1e278, 1e279,
     1e280, 1e281, 1e282, 1e283, 1e284, 1e285, 1e286, 1e287, 1e288, 1e289,
     1e290, 1e291, 1e292, 1e293, 1e294, 1e295, 1e296, 1e297, 1e298, 1e299,
     1e300, 1e301, 1e302, 1e303, 1e304, 1e305, 1e306, 1e307, 1e308];

fn from_trait<'de, R>(read: R, options: Options) -> Result<Value>
where
    R: Read<'de>,
{
    let mut parser = Parser::with_options(read, options);
    let value = parser.parse_value()?;
    parser.end()?;

    Ok(value)
}

/// Parse a value from an IO stream containing a single S-expression.
///
/// The content of the IO stream is parsed directly from the stream
/// without being buffered in memory.
///
/// When reading from a source against which short reads are not efficient, such
/// as a [`File`], you will want to apply your own buffering, e.g. using
/// [`std::io::BufReader`].
///
/// ```
/// use std::error::Error;
/// use std::fs::File;
/// use std::io::BufReader;
/// use std::path::Path;
///
/// fn read_value_from_file<P: AsRef<Path>>(path: P) -> Result<lexpr::Value, Box<Error>> {
///     // Open the file in read-only mode with buffer.
///     let file = File::open(path)?;
///     let reader = BufReader::new(file);
///
///     // Read an arbitrary S-expression, using parser options suitable for Emacs Lisp.
///     let value = lexpr::from_reader_custom(reader, lexpr::parse::Options::elisp())?;
///
///     // Return the value.
///     Ok(value)
/// }
///
/// fn main() {
/// # }
/// # fn fake_main() {
///     let value = read_value_from_file("test.el").unwrap();
///     println!("{:?}", value);
/// }
/// ```
///
/// [`File`]: https://doc.rust-lang.org/std/fs/struct.File.html
/// [`BufReader`]: https://doc.rust-lang.org/std/io/struct.BufReader.html
pub fn from_reader_custom(rdr: impl io::Read, options: Options) -> Result<Value> {
    from_trait(read::IoRead::new(rdr), options)
}

/// Parse a value from an IO stream of S-expressions, using the default parser
/// options.
///
/// See [`from_reader_custom`] for more information.
///
/// [`from_reader_custom`]: fn.from_reader_custom.html
pub fn from_reader(rdr: impl io::Read) -> Result<Value> {
    from_reader_custom(rdr, Options::default())
}

/// Parse a value from bytes representing a single S-expression.
///
/// ```
/// let value = lexpr::from_slice_custom(b"(a (nested) list)", lexpr::parse::Options::new());
/// println!("{:?}", value);
/// ```
pub fn from_slice_custom(bytes: &[u8], options: Options) -> Result<Value> {
    from_trait(read::SliceRead::new(bytes), options)
}

/// Parse a value from bytes representing a single S-expressions, using the
/// default parser options.
///
/// See [`from_slice_custom`] for more information.
///
/// [`from_slice_custom`]: fn.from_slice_custom.html
pub fn from_slice(bytes: &[u8]) -> Result<Value> {
    from_slice_custom(bytes, Options::default())
}

/// Parse a value from a string slice representing a single S-expression.
///
/// ```
/// let value = lexpr::from_str_custom("(a (nested) list)", lexpr::parse::Options::new());
/// println!("{:?}", value);
/// ```
pub fn from_str_custom(s: &str, options: Options) -> Result<Value> {
    from_trait(read::StrRead::new(s), options)
}

/// Parse a value from a string slice representing a single S-expressions, using
/// the default parser options.
///
/// See [`from_str_custom`] for more information.
///
/// [`from_str_custom`]: fn.from_str_custom.html
pub fn from_str(s: &str) -> Result<Value> {
    from_str_custom(s, Options::default())
}

#[cfg(test)]
mod tests {
    use super::*;
    use crate::{Atom, Value};

    #[test]
    fn test_atoms_default() {
        let mut parser =
            Parser::from_str("foo-symbol :prefix-keyword postfix-keyword: #t #f #nil 100 -42 4.5");
        for value in vec![
            Value::symbol("foo-symbol"),
            Value::symbol(":prefix-keyword"),
            Value::symbol("postfix-keyword:"),
            Value::from(true),
            Value::from(false),
            Value::nil(),
            Value::from(100),
            Value::from(-42),
            Value::from(4.5),
        ] {
            assert_eq!(parser.parse().unwrap(), Some(value));
        }
        parser.end().unwrap();
    }

    #[test]
    fn test_atom_failures() {
        assert!(from_str_custom("#:octothorpe-keyword", Options::new()).is_err());
    }

    #[test]
    fn test_keyword_styles() {
        let prefix = Options::new().with_keyword_style(KeywordStyle::ColonPrefix);
        let postfix = Options::new().with_keyword_style(KeywordStyle::ColonPostfix);
        let octothorpe = Options::new().with_keyword_style(KeywordStyle::Octothorpe);

        assert_eq!(
            from_str_custom(":prefix", prefix).unwrap(),
            Value::keyword("prefix")
        );
        assert_eq!(
            from_str_custom("postfix:", postfix).unwrap(),
            Value::keyword("postfix")
        );
        assert_eq!(
            from_str_custom("#:octothorpe", octothorpe).unwrap(),
            Value::keyword("octothorpe")
        );
    }

    #[test]
    fn test_lists_default() {
        assert_eq!(from_str("()").unwrap(), Value::from(vec![]));
        assert_eq!(
            from_str("(hello)").unwrap(),
            Value::list(vec![Value::symbol("hello")])
        );
        assert_eq!(
            from_str("(1 . (2 . (3 . ())))").unwrap(),
            Value::list(vec![1u32, 2, 3])
        );
        assert_eq!(
            from_str("(1 . 2)").unwrap(),
            Value::improper_list(vec![Value::from(1)], Atom::from(2))
        );
        assert_eq!(
            from_str("(1 hello . 2)").unwrap(),
            Value::improper_list(vec![Value::from(1), Value::symbol("hello")], Atom::from(2))
        );
    }

    #[test]
    fn test_broken_lists_default() {
        assert!(from_str("(.)").is_err());
        assert!(from_str("(1 2 .)").is_err());
        assert!(from_str("(1 2 . 3 4)").is_err());
        assert!(from_str("(1 2 . 3 . 4)").is_err());
    }

    #[test]
    fn test_list_nil_default() {
        assert_eq!(
            from_str("(1 . nil)").unwrap(),
            Value::improper_list(vec![1], Atom::symbol("nil"))
        );
        assert_eq!(
            from_str("(nil)").unwrap(),
            Value::list(vec![Value::symbol("nil")])
        );
    }

    #[test]
    fn test_list_elisp() {
        let elisp = Options::elisp();
        assert_eq!(
            from_str_custom("(1 . nil)", elisp.clone()).unwrap(),
            Value::list(vec![1]),
        );
        assert_eq!(
            from_str_custom("(nil)", elisp.clone()).unwrap(),
            Value::list(vec![Value::empty_list()])
        );
    }
}