1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
//! The Value enum, a dynamically typed way of representing any valid S-expression value.
//!
//! # Constructing S-Expressions
//!
//! Lexpr provides a [`sexp!` macro][macro] to build `lexpr::Value`
//! objects with very natural S-expression syntax.
//!
//! ```
//! use lexpr::sexp;
//!
//! // The type of `john` is `lexpr::Value`
//! let john = sexp!((
//!     (name . "John Doe")
//!     (age . 43)
//!     (phones "+44 1234567" "+44 2345678")
//! ));
//!
//! println!("first phone number: {}", john["phones"][0]);
//!
//! // Convert to a string of S-expression data and print it out
//! println!("{}", john.to_string());
//! ```
//!
//! The `Value::to_string()` function converts a `lexpr::Value` into a
//! `String` of S-expression text.
//!
//! One neat thing about the `sexp!` macro is that variables and
//! expressions can be interpolated directly into the S-expression
//! value as you are building it. The macro will check at compile time
//! that the value you are interpolating is able to be represented as
//! S-expression data.
//!
//! To interpolate, use the comma (`,`, also known as "unqote" in
//! Lisp). The interpolated expression must either be a single token,
//! or surrounded by round or curly braces.
//!
//! ```
//! # use lexpr::sexp;
//! #
//! # fn random_phone() -> u16 { 0 }
//! #
//! let full_name = "John Doe";
//! let age_last_year = 42;
//!
//! // The type of `john` is `lexpr::Value`
//! let john = sexp!((
//!     (name . ,full_name)
//!     (age . ,(age_last_year + 1))
//!     (phones ,{ format!("+44 {}", random_phone()) })
//! ));
//! ```
//!
//! A string of S-expression data can be parsed into a `lexpr::Value` by the
//! [`lexpr::from_str`][from_str] function. There is also
//! [`from_slice`][from_slice] for parsing from a byte slice `&[u8]` and
//! [`from_reader`][from_reader] for parsing from any `io::Read` like a file or
//! a TCP stream. For all these functions there also is a `_custom` variant
//! which allows for specifying parser options, in case the input deviates from
//! the `lexpr` default behavior.
//!
//! ```
//! use lexpr::{sexp, parse::Error, Value};
//!
//! # fn main() -> Result<(), Error> {
//! // Some S-expression input data as a &str. Maybe this comes from the user.
//! let data = r#"(
//!         (name . "John Doe")
//!         (age . 43)
//!         (phones . (
//!             "+44 1234567"
//!             "+44 2345678"
//!         ))
//!     )"#;
//!
//! // Parse the string of data into lexpr::Value.
//! let v: Value = lexpr::from_str(data)?;
//!
//! // Access parts of the data by indexing with square brackets.
//! println!("Please call {} at the number {}", v["name"], v["phones"][0]);
//! # Ok(())
//! # }
//! ```
//!
//! [macro]: ../macro.sexp.html
//! [from_str]: ../parse/fn.from_str.html
//! [from_slice]: ../parse/fn.from_slice.html
//! [from_reader]: ../parse/fn.from_reader.html

use std::fmt;
use std::io;
use std::str;

use crate::cons::{self, Cons};
use crate::number::Number;

pub use self::index::Index;

/// Represents an S-expression value.
///
/// See the [`lexpr::value`] module documentation for usage examples.
///
/// [`lexpr::value`]: index.html
#[derive(Debug, PartialEq, Clone)]
pub enum Value {
    /// The special "nil" value.
    ///
    /// This is kind of an oddball value. In traditional Lisps (e.g., Common
    /// Lisp or Emacs Lisp) the empty list can be written as the symbol `nil`,
    /// while in Scheme, `nil` is just a regular symbol. Furthermore,
    /// traditional Lisps don't have a separate boolean data type, and represent
    /// true and false by the symbols `t` and `nil` instead. The `lexpr` parser
    /// can be instructed to parse the `nil` symbol as the `Nil` value (see
    /// [`NilSymbol::Special`]), allowing to choose its representation when
    /// converting to text again (see [`NilSyntax`]). Note that the empty list,
    /// when written as `()` or implicitly constructed as a list terminator, is
    /// always parsed as [`Value::Null`], not `Value::Nil`.
    ///
    /// In addition to being useful for conversions between S-expression
    /// variants, this value is also potentially returned when using the square
    /// bracket indexing operator on `Value`.
    ///
    /// [`NilSymbol::Special`]: crate::parse::NilSymbol::Special
    /// [`NilSyntax`]: ../print/enum.NilSyntax.html
    Nil,

    /// The empty list.
    ///
    /// This value terminates a chain of cons cells forming a proper list.
    Null,

    /// A boolean value.
    Bool(bool),

    /// A number.
    Number(Number),

    /// A character.
    Char(char),

    /// A string.
    String(Box<str>),

    /// A symbol.
    Symbol(Box<str>),

    /// A keyword.
    Keyword(Box<str>),

    /// A byte vector.
    Bytes(Box<[u8]>),

    /// Represents a Lisp "cons cell".
    ///
    /// Cons cells are often used to form singly-linked lists.
    /// ```
    /// # use lexpr::sexp;
    /// let v = sexp!((a list 1 2 3));
    /// assert!(v.is_cons());
    /// assert_eq!(v[4], sexp!(3));
    /// ```
    Cons(Cons),

    /// A Lisp vector.
    Vector(Box<[Value]>),
}

impl Value {
    /// Construct a symbol, given its name.
    pub fn symbol(name: impl Into<Box<str>>) -> Self {
        Value::Symbol(name.into())
    }

    /// Construct a keyword, given its name.
    ///
    /// ```
    /// # use lexpr::Value;
    /// let value = Value::keyword("foo");
    /// assert!(value.is_keyword());
    /// assert_eq!(value.as_keyword().unwrap(), "foo");
    /// ```
    pub fn keyword(name: impl Into<Box<str>>) -> Self {
        Value::Keyword(name.into())
    }

    /// Construct a string.
    ///
    /// ```
    /// # use lexpr::Value;
    /// let value = Value::string("foo");
    /// assert!(value.is_string());
    /// assert_eq!(value.as_str().unwrap(), "foo");
    /// ```
    pub fn string(s: impl Into<Box<str>>) -> Self {
        Value::String(s.into())
    }

    /// Construct a byte vector.
    ///
    /// ```
    /// # use lexpr::Value;
    /// let value = Value::bytes(b"foo" as &[u8]);
    /// assert!(value.is_bytes());
    /// assert_eq!(value.as_bytes().unwrap(), b"foo");
    /// ```
    pub fn bytes(bv: impl Into<Box<[u8]>>) -> Self {
        Value::Bytes(bv.into())
    }

    /// Create a cons cell given its `car` and `cdr` fields.
    ///
    /// ```
    /// # use lexpr::Value;
    /// let value = Value::cons(1, Value::Null);
    /// assert!(value.is_cons());
    /// assert_eq!(value.as_pair().unwrap(), (&Value::from(1), &Value::Null));
    /// ```
    ///
    /// Note that you can also construct a cons cell from a Rust pair via the
    /// `From` trait:
    ///
    /// ```
    /// # use lexpr::Value;
    /// let value = Value::from((42, "answer"));
    /// assert!(value.is_cons());
    /// assert_eq!(value.as_pair().unwrap(), (&Value::from(42), &Value::string("answer")));
    /// ```
    pub fn cons<T, U>(car: T, cdr: U) -> Self
    where
        T: Into<Value>,
        U: Into<Value>,
    {
        Value::Cons(Cons::new(car, cdr))
    }

    /// Create a list value from elements convertible into `Value`.
    ///
    /// ```
    /// # use lexpr::{sexp, Value};
    /// assert_eq!(Value::list(vec![1, 2, 3]), sexp!((1 2 3)));
    /// ```
    pub fn list<I>(elements: I) -> Self
    where
        I: IntoIterator,
        I::Item: Into<Value>,
    {
        Self::append(elements, Value::Null)
    }

    /// Returns true if the value is a (proper) list.
    pub fn is_list(&self) -> bool {
        match self {
            Value::Null => true,
            Value::Cons(pair) => pair
                .iter()
                .all(|p| matches!(p.cdr(), Value::Null | Value::Cons(_))),
            _ => false,
        }
    }

    /// Returns true if the value is a dotted (improper) list.
    ///
    /// Note that all values that are not pairs are considered dotted lists.
    ///
    /// ```
    /// # use lexpr::{sexp, Value};
    /// let list = sexp!((1 2 3));
    /// assert!(!list.is_dotted_list());
    /// let dotted = sexp!((1 2 . 3));
    /// assert!(dotted.is_dotted_list());
    /// ```
    pub fn is_dotted_list(&self) -> bool {
        match self {
            Value::Null => false,
            Value::Cons(pair) => pair.iter().all(|p| !matches!(p.cdr(), Value::Null)),
            _ => true,
        }
    }

    /// Create a list value from elements convertible into `Value`, using a
    /// given value as a tail.
    ///
    /// ```
    /// # use lexpr::{sexp, Value};
    /// assert_eq!(Value::append(vec![1u32, 2], 3), sexp!((1 2 . 3)));
    /// assert_eq!(Value::append(vec![1u32, 2, 3], sexp!((4 5))), sexp!((1 2 3 4 5)));
    /// ```
    pub fn append<I, T>(elements: I, tail: T) -> Self
    where
        I: IntoIterator,
        I::Item: Into<Value>,
        T: Into<Value>,
    {
        let mut list = Cons::new(Value::Nil, Value::Null);
        let mut pair = &mut list;
        let mut have_value = false;
        for item in elements {
            if have_value {
                pair.set_cdr(Value::from((Value::Nil, Value::Null)));
                pair = pair.cdr_mut().as_cons_mut().unwrap();
            }
            pair.set_car(item.into());
            have_value = true;
        }
        if have_value {
            pair.set_cdr(tail.into());
            Value::Cons(list)
        } else {
            tail.into()
        }
    }

    /// Create a vector value from elements convertible into `Value`.
    ///
    /// ```
    /// # use lexpr::{sexp, Value};
    /// assert_eq!(Value::vector(vec![1u32, 2, 3]), sexp!(#(1 2 3)));
    /// ```
    pub fn vector<I>(elements: I) -> Self
    where
        I: IntoIterator,
        I::Item: Into<Value>,
    {
        let v: Vec<_> = elements.into_iter().map(Into::into).collect();
        Value::Vector(v.into_boxed_slice())
    }

    /// Returns true if the value is a String. Returns false otherwise.
    ///
    /// For any Value on which `is_string` returns true, `as_str` is guaranteed
    /// to return the string slice.
    ///
    /// ```
    /// # use lexpr::sexp;
    /// #
    /// let v = sexp!(((a . "some string") (b . #f)));
    ///
    /// assert!(v["a"].is_string());
    ///
    /// // The boolean `false` is not a string.
    /// assert!(!v["b"].is_string());
    /// ```
    pub fn is_string(&self) -> bool {
        self.as_str().is_some()
    }

    /// If the value is a String, returns the associated str. Returns `None`
    /// otherwise.
    ///
    /// ```
    /// # use lexpr::sexp;
    /// #
    /// let v = sexp!(((a . "some string") (b . #f)));
    ///
    /// assert_eq!(v["a"].as_str(), Some("some string"));
    ///
    /// // The boolean `false` is not a string.
    /// assert_eq!(v["b"].as_str(), None);
    ///
    /// // S-expression values are printed in S-expression
    /// // representation, so strings are in quotes.
    /// //    The value is: "some string"
    /// println!("The value is: {}", v["a"]);
    ///
    /// // Rust strings are printed without quotes.
    /// //
    /// //    The value is: some string
    /// println!("The value is: {}", v["a"].as_str().unwrap());
    /// ```
    pub fn as_str(&self) -> Option<&str> {
        match self {
            Value::String(s) => Some(s),
            _ => None,
        }
    }

    /// Returns true if the value is a symbol. Returns false otherwise.
    ///
    /// For any Value on which `is_symbol` returns true, `as_symbol` is guaranteed
    /// to return the string slice.
    ///
    /// ```
    /// # use lexpr::sexp;
    /// #
    /// let v = sexp!((#:foo bar "baz"));
    ///
    /// assert!(v[1].is_symbol());
    ///
    /// // Keywords and strings are not symbols.
    /// assert!(!v[0].is_symbol());
    /// assert!(!v[2].is_symbol());
    /// ```
    pub fn is_symbol(&self) -> bool {
        self.as_symbol().is_some()
    }

    /// If the value is a symbol, returns the associated str. Returns `None`
    /// otherwise.
    ///
    /// ```
    /// # use lexpr::sexp;
    /// #
    /// let v = sexp!(foo);
    ///
    /// assert_eq!(v.as_symbol(), Some("foo"));
    /// ```
    pub fn as_symbol(&self) -> Option<&str> {
        match self {
            Value::Symbol(s) => Some(s),
            _ => None,
        }
    }

    /// Returns true if the value is a keyword. Returns false otherwise.
    ///
    /// For any Value on which `is_keyword` returns true, `as_keyword` is guaranteed
    /// to return the string slice.
    ///
    /// ```
    /// # use lexpr::sexp;
    /// #
    /// let v = sexp!((#:foo bar "baz"));
    ///
    /// assert!(v[0].is_keyword());
    ///
    /// // Symbols and strings are not keywords.
    /// assert!(!v[1].is_keyword());
    /// assert!(!v[2].is_keyword());
    /// ```
    pub fn is_keyword(&self) -> bool {
        self.as_keyword().is_some()
    }

    /// If the value is a keyword, returns the associated str. Returns `None`
    /// otherwise.
    ///
    /// ```
    /// # use lexpr::sexp;
    /// #
    /// let v = sexp!(#:foo);
    ///
    /// assert_eq!(v.as_keyword(), Some("foo"));
    /// ```
    pub fn as_keyword(&self) -> Option<&str> {
        match self {
            Value::Keyword(s) => Some(s),
            _ => None,
        }
    }

    /// Get the name of a symbol or keyword, or the value of a string.
    ///
    /// This is useful if symbols, keywords and strings need to be treated
    /// equivalently in some context.
    ///
    /// ```
    /// # use lexpr::sexp;
    /// #
    /// let kw = sexp!(#:foo);
    /// assert_eq!(kw.as_name(), Some("foo"));
    ///
    /// let sym = sexp!(bar);
    /// assert_eq!(sym.as_name(), Some("bar"));
    ///
    /// let s = sexp!("baz");
    /// assert_eq!(s.as_name(), Some("baz"));
    /// ```
    pub fn as_name(&self) -> Option<&str> {
        match self {
            Value::Symbol(s) => Some(s),
            Value::Keyword(s) => Some(s),
            Value::String(s) => Some(s),
            _ => None,
        }
    }

    /// Returns true if the value is a byte vector. Returns false otherwise.
    ///
    /// For any Value on which `is_bytes` returns true, `as_bytes` is guaranteed
    /// to return the byte slice.
    ///
    /// ```
    /// # use lexpr::sexp;
    /// #
    /// let v = sexp!(((a . ,(b"some bytes" as &[u8])) (b . "string")));
    ///
    /// assert!(v["a"].is_bytes());
    ///
    /// // A string is not a byte vector.
    /// assert!(!v["b"].is_bytes());
    /// ```
    pub fn is_bytes(&self) -> bool {
        self.as_bytes().is_some()
    }

    /// If the value is a byte vector, returns the associated byte
    /// slice. Returns `None` otherwise.
    ///
    /// ```
    /// # use lexpr::sexp;
    /// #
    /// let v = sexp!(((a . ,(b"some bytes" as &[u8])) (b . "string")));
    ///
    /// assert_eq!(v["a"].as_bytes(), Some(b"some bytes" as &[u8]));
    ///
    /// // A string is not a byte vector.
    /// assert_eq!(v["b"].as_bytes(), None);
    /// ```
    pub fn as_bytes(&self) -> Option<&[u8]> {
        match self {
            Value::Bytes(s) => Some(s),
            _ => None,
        }
    }

    /// Return `true` if the value is a number.
    pub fn is_number(&self) -> bool {
        self.as_number().is_some()
    }

    /// For numbers, return a reference to them. For other values, return
    /// `None`.
    pub fn as_number(&self) -> Option<&Number> {
        match self {
            Value::Number(n) => Some(n),
            _ => None,
        }
    }

    /// Returns true if the value is an integer between `i64::MIN` and
    /// `i64::MAX`.
    ///
    /// For any Value on which `is_i64` returns true, `as_i64` is guaranteed to
    /// return the integer value.
    ///
    /// ```
    /// # use lexpr::sexp;
    /// #
    /// let big = i64::max_value() as u64 + 10;
    /// let v = sexp!(((a . 64) (b . ,big) (c . 256.0)));
    ///
    /// assert!(v["a"].is_i64());
    ///
    /// // Greater than i64::MAX.
    /// assert!(!v["b"].is_i64());
    ///
    /// // Numbers with a decimal point are not considered integers.
    /// assert!(!v["c"].is_i64());
    /// ```
    pub fn is_i64(&self) -> bool {
        match self.as_number() {
            Some(n) => n.is_i64(),
            _ => false,
        }
    }

    /// Returns true if the value is an integer between zero and `u64::MAX`.
    ///
    /// For any Value on which `is_u64` returns true, `as_u64` is guaranteed to
    /// return the integer value.
    ///
    /// ```
    /// # use lexpr::sexp;
    /// #
    /// let v = sexp!(((a . 64) (b . -64) (c . 256.0)));
    ///
    /// assert!(v["a"].is_u64());
    ///
    /// // Negative integer.
    /// assert!(!v["b"].is_u64());
    ///
    /// // Numbers with a decimal point are not considered integers.
    /// assert!(!v["c"].is_u64());
    /// ```
    pub fn is_u64(&self) -> bool {
        match self.as_number() {
            Some(n) => n.is_u64(),
            _ => false,
        }
    }

    /// Returns true if the value is a number that can be represented by f64.
    ///
    /// For any Value on which `is_f64` returns true, `as_f64` is guaranteed to
    /// return the floating point value.
    ///
    /// Currently this function returns true if and only if both `is_i64` and
    /// `is_u64` return false but this is not a guarantee in the future.
    ///
    /// ```
    /// # use lexpr::sexp;
    /// #
    /// let v = sexp!(((a . 256.0) (b . 64) (c . -64)));
    ///
    /// assert!(v["a"].is_f64());
    ///
    /// // Integers.
    /// assert!(!v["b"].is_f64());
    /// assert!(!v["c"].is_f64());
    /// ```
    #[inline]
    pub fn is_f64(&self) -> bool {
        match self.as_number() {
            Some(n) => n.is_f64(),
            _ => false,
        }
    }

    /// If the value is an integer, represent it as i64 if possible. Returns
    /// None otherwise.
    ///
    /// ```
    /// # use lexpr::sexp;
    /// #
    /// let big = i64::max_value() as u64 + 10;
    /// let v = sexp!(((a . 64) (b . ,big) (c . 256.0)));
    ///
    /// assert_eq!(v["a"].as_i64(), Some(64));
    /// assert_eq!(v["b"].as_i64(), None);
    /// assert_eq!(v["c"].as_i64(), None);
    /// ```
    #[inline]
    pub fn as_i64(&self) -> Option<i64> {
        self.as_number().and_then(Number::as_i64)
    }

    /// If the value is an integer, represent it as u64 if possible. Returns
    /// None otherwise.
    ///
    /// ```
    /// # use lexpr::sexp;
    /// #
    /// let v = sexp!(((a . 64) (b . -64) (c . 256.0)));
    ///
    /// assert_eq!(v["a"].as_u64(), Some(64));
    /// assert_eq!(v["b"].as_u64(), None);
    /// assert_eq!(v["c"].as_u64(), None);
    /// ```
    pub fn as_u64(&self) -> Option<u64> {
        self.as_number().and_then(Number::as_u64)
    }

    /// If the value is a number, represent it as f64 if possible. Returns
    /// None otherwise.
    ///
    /// ```
    /// # use lexpr::sexp;
    /// #
    /// let v = sexp!(((a . 256.0) (b . 64) (c . -64)));
    ///
    /// assert_eq!(v["a"].as_f64(), Some(256.0));
    /// assert_eq!(v["b"].as_f64(), Some(64.0));
    /// assert_eq!(v["c"].as_f64(), Some(-64.0));
    /// ```
    pub fn as_f64(&self) -> Option<f64> {
        self.as_number().and_then(Number::as_f64)
    }

    /// Returns true if the value is a Boolean. Returns false otherwise.
    ///
    /// For any Value on which `is_boolean` returns true, `as_bool` is
    /// guaranteed to return the boolean value.
    ///
    /// ```
    /// # use lexpr::sexp;
    /// #
    /// let v = sexp!(((a . #f) (b . #nil)));
    ///
    /// assert!(v["a"].is_boolean());
    ///
    /// // The nil value is special, and not a boolean.
    /// assert!(!v["b"].is_boolean());
    /// ```
    pub fn is_boolean(&self) -> bool {
        self.as_bool().is_some()
    }

    /// If the value is a `Boolean`, returns the associated bool. Returns None
    /// otherwise.
    ///
    /// ```
    /// # use lexpr::sexp;
    /// #
    /// let v = sexp!(((a . #f) (b . "false")));
    ///
    /// assert_eq!(v["a"].as_bool(), Some(false));
    ///
    /// // The string `"false"` is a string, not a boolean.
    /// assert_eq!(v["b"].as_bool(), None);
    /// ```
    pub fn as_bool(&self) -> Option<bool> {
        match self {
            Value::Bool(b) => Some(*b),
            _ => None,
        }
    }

    /// Returns true if the value is a character. Returns false otherwise.
    pub fn is_char(&self) -> bool {
        self.as_char().is_some()
    }

    /// If the value is a character, returns the associated `char`. Returns None
    /// otherwise.
    ///
    /// ```
    /// # use lexpr::sexp;
    /// #
    /// let v = sexp!(((a . 'c') (b . "c")));
    ///
    /// assert_eq!(v["a"].as_char(), Some('c'));
    ///
    /// // The string `"c"` is a single-character string, not a character.
    /// assert_eq!(v["b"].as_char(), None);
    /// ```
    pub fn as_char(&self) -> Option<char> {
        match self {
            Value::Char(c) => Some(*c),
            _ => None,
        }
    }

    /// Returns true if the value is `Nil`. Returns false otherwise.
    ///
    /// For any Value on which `is_nil` returns true, `as_nil` is guaranteed
    /// to return `Some(())`.
    ///
    /// ```
    /// # use lexpr::sexp;
    /// #
    /// let v = sexp!(((a . #nil) (b . #f)));
    ///
    /// assert!(v["a"].is_nil());
    ///
    /// // The boolean `false` is not nil.
    /// assert!(!v["b"].is_nil());
    /// ```
    pub fn is_nil(&self) -> bool {
        self.as_nil().is_some()
    }

    /// If the value is `Nil`, returns `()`. Returns `None` otherwise.
    ///
    /// ```
    /// # use lexpr::sexp;
    /// #
    /// let v = sexp!(((a . #nil) (b . #f) (c . ())));
    ///
    /// assert_eq!(v["a"].as_nil(), Some(()));
    ///
    /// // The boolean `false` is not nil.
    /// assert_eq!(v["b"].as_nil(), None);
    /// // Neither is the empty list.
    /// assert_eq!(v["c"].as_nil(), None);
    /// ```
    pub fn as_nil(&self) -> Option<()> {
        match self {
            Value::Nil => Some(()),
            _ => None,
        }
    }

    /// Returns true if the value is `Null`. Returns false otherwise.
    pub fn is_null(&self) -> bool {
        self.as_null().is_some()
    }

    /// If the value is `Null`, returns `()`. Returns `None` otherwise.
    pub fn as_null(&self) -> Option<()> {
        match self {
            Value::Null => Some(()),
            _ => None,
        }
    }

    /// Returns true if the value is a cons cell. Returns `False` otherwise.
    pub fn is_cons(&self) -> bool {
        matches!(self, Value::Cons(_))
    }

    /// If the value is a cons cell, returns a reference to it. Returns `None`
    /// otherwise.
    pub fn as_cons(&self) -> Option<&Cons> {
        match self {
            Value::Cons(pair) => Some(pair),
            _ => None,
        }
    }

    /// If the value is a cons cell, returns a mutable reference to it. Returns
    /// `None` otherwise.
    pub fn as_cons_mut(&mut self) -> Option<&mut Cons> {
        match self {
            Value::Cons(pair) => Some(pair),
            _ => None,
        }
    }

    /// If the value is a cons cell, return references to its `car` and `cdr`
    /// fields.
    ///
    /// ```
    /// # use lexpr::sexp;
    /// let cell = sexp!((foo . bar));
    /// assert_eq!(cell.as_pair(), Some((&sexp!(foo), &sexp!(bar))));
    /// assert_eq!(sexp!("not-a-pair").as_pair(), None);
    /// ```
    pub fn as_pair(&self) -> Option<(&Value, &Value)> {
        self.as_cons().map(Cons::as_pair)
    }

    /// Returns true if the value is a vector.
    pub fn is_vector(&self) -> bool {
        matches!(self, Value::Vector(_))
    }

    /// If the value is a vector, return a reference to its elements.
    ///
    /// ```
    /// # use lexpr::{sexp, Value};
    /// let v = sexp!(#(1 2 "three"));
    /// let slice: &[Value] = &[sexp!(1), sexp!(2), sexp!("three")];
    /// assert_eq!(v.as_slice(), Some(slice));
    /// ```
    pub fn as_slice(&self) -> Option<&[Value]> {
        match self {
            Value::Vector(elements) => Some(elements),
            _ => None,
        }
    }

    /// If the value is a vector, return a mutable reference to its elements.
    ///
    /// ```
    /// # use lexpr::{sexp, Value};
    /// let mut v = sexp!(#(1 2 "three"));
    /// v.as_slice_mut().unwrap()[2] = sexp!(3);
    /// let slice: &[Value] = &[sexp!(1), sexp!(2), sexp!(3)];
    /// assert_eq!(v.as_slice(), Some(slice));
    /// ```
    pub fn as_slice_mut(&mut self) -> Option<&mut [Value]> {
        match self {
            Value::Vector(elements) => Some(elements),
            _ => None,
        }
    }

    /// If the value is a list, return an iterator over the list elements.
    ///
    /// If the value is not either a cons cell or `Null`, `None` is returned.
    ////
    /// Note that the returned iterator has special behavior for improper lists, yielding the
    /// element after the dot after returning `None` the first time.
    ///
    /// ```
    /// use lexpr::sexp;
    ///
    /// let value = lexpr::from_str("(1 2 . 3)").unwrap();
    /// let mut iter = value.list_iter().unwrap();
    /// assert_eq!(iter.next(), Some(&sexp!(1)));
    /// assert_eq!(iter.next(), Some(&sexp!(2)));
    /// assert_eq!(iter.next(), None);
    /// assert_eq!(iter.next(), Some(&sexp!(3)));
    /// assert_eq!(iter.next(), None);
    /// ```
    pub fn list_iter(&self) -> Option<cons::ListIter<'_>> {
        match self {
            Value::Cons(cell) => Some(cons::ListIter::cons(cell)),
            Value::Null => Some(cons::ListIter::empty()),
            _ => None,
        }
    }

    /// Attempts conversion to a vector, cloning the values.
    ///
    /// For proper lists (including `Value::Null`), this returns a vector of
    /// values. If you want to handle improper list in a similar way, combine
    /// [`as_cons`] and the [`Cons::to_vec`] method.
    ///
    /// ```
    /// # use lexpr::{sexp, Value};
    /// assert_eq!(sexp!((1 2 3)).to_vec(), Some(vec![sexp!(1), sexp!(2), sexp!(3)]));
    /// assert_eq!(sexp!(()).to_vec(), Some(vec![]));
    /// assert_eq!(sexp!((1 2 . 3)).to_vec(), None);
    /// ```
    /// [`as_cons`]: Value::as_cons
    pub fn to_vec(&self) -> Option<Vec<Value>> {
        match self {
            Value::Null => Some(Vec::new()),
            Value::Cons(pair) => {
                let (vec, rest) = pair.to_ref_vec();
                if rest.is_null() {
                    Some(vec.into_iter().cloned().collect())
                } else {
                    None
                }
            }
            _ => None,
        }
    }

    /// Attempts conversion to a vector, taking references to the values.
    ///
    /// For proper lists (including `Value::Null`), this returns a vector of
    /// value references. If you want to handle improper list in a similar way,
    /// combine [`as_cons`] and the [`Cons::to_ref_vec`] method.
    ///
    /// ```
    /// # use lexpr::{sexp, Value};
    /// assert_eq!(sexp!((1 2 3)).to_ref_vec(), Some(vec![&sexp!(1), &sexp!(2), &sexp!(3)]));
    /// assert_eq!(sexp!(()).to_ref_vec(), Some(vec![]));
    /// assert_eq!(sexp!((1 2 . 3)).to_ref_vec(), None);
    /// ```
    ///
    /// [`as_cons`]: Value::as_cons
    pub fn to_ref_vec(&self) -> Option<Vec<&Value>> {
        match self {
            Value::Null => Some(Vec::new()),
            Value::Cons(pair) => {
                let (vec, rest) = pair.to_ref_vec();
                if rest.is_null() {
                    Some(vec)
                } else {
                    None
                }
            }
            _ => None,
        }
    }

    /// Index into a S-expression list. A string or `Value` value can
    /// be used to access a value in an association list, and a usize
    /// index can be used to access the n-th element of a list.
    ///
    /// For indexing into association lists, the given string will
    /// match strings, symbols and keywords.
    ///
    /// Returns `None` if the type of `self` does not match the type
    /// of the index, for example if the index is a string and `self`
    /// is not an association list. Also returns `None` if the given
    /// key does not exist in the map or the given index is not within
    /// the bounds of the list; note that the tail of an improper list
    /// is also considered out-of-bounds.
    ///
    /// In Scheme terms, this method can be thought of a combination
    /// of `assoc-ref` and `list-ref`, depending on the argument type. If
    /// you want to look up a number in an association list, use an
    /// `Value` value containing that number.
    ///
    /// ```
    /// # use lexpr::sexp;
    /// #
    /// let alist = sexp!((("A" . 65) (B . 66) (#:C . 67) (42 . "The answer")));
    /// assert_eq!(alist.get("A").unwrap(), &sexp!(65));
    /// assert_eq!(alist.get("B").unwrap(), &sexp!(66));
    /// assert_eq!(alist.get("C").unwrap(), &sexp!(67));
    /// assert_eq!(alist.get(sexp!(42)).unwrap(), &sexp!("The answer"));
    ///
    /// let list = sexp!(("A" "B" "C"));
    /// assert_eq!(*list.get(2).unwrap(), sexp!("C"));
    ///
    /// assert_eq!(list.get("A"), None);
    /// ```
    ///
    /// Square brackets can also be used to index into a value in a
    /// more concise way. This returns the nil value in cases where
    /// `get` would have returned `None`. See [`Index`] for details.
    ///
    /// ```
    /// # use lexpr::sexp;
    /// #
    /// let alist = sexp!((
    ///     ("A" . ("a" "á" "à"))
    ///     ("B" . ((b . 42) (c . 23)))
    ///     ("C" . ("c" "ć" "ć̣" "ḉ"))
    /// ));
    /// assert_eq!(alist["B"][0], sexp!((b . 42)));
    /// assert_eq!(alist["C"][1], sexp!("ć"));
    ///
    /// assert_eq!(alist["D"], sexp!(#nil));
    /// assert_eq!(alist[0]["x"]["y"]["z"], sexp!(#nil));
    /// ```
    ///
    /// [`Index`]: trait.Index.html
    pub fn get<I: Index>(&self, index: I) -> Option<&Value> {
        index.index_into(self)
    }
}

struct WriterFormatter<'a, 'b> {
    inner: &'a mut fmt::Formatter<'b>,
}

impl<'a, 'b> io::Write for WriterFormatter<'a, 'b> {
    fn write(&mut self, buf: &[u8]) -> io::Result<usize> {
        fn io_error<E>(_: E) -> io::Error {
            // Sexp does not matter because fmt::Debug and fmt::Display impls
            // below just map it to fmt::Error
            io::Error::new(io::ErrorKind::Other, "fmt error")
        }
        let s = str::from_utf8(buf).map_err(io_error)?;
        self.inner.write_str(s).map_err(io_error)?;
        Ok(buf.len())
    }

    fn flush(&mut self) -> io::Result<()> {
        Ok(())
    }
}

impl fmt::Display for Value {
    /// Display an S-expression value as a string.
    ///
    /// ```
    /// # use lexpr::sexp;
    /// #
    /// let value = sexp!(((city "London") (street "10 Downing Street")));
    ///
    /// // Compact format:
    /// //
    /// // ((city "London") (street "10 Downing Street"))
    /// let compact = format!("{}", value);
    /// assert_eq!(compact,
    ///     r#"((city "London") (street "10 Downing Street"))"#);
    /// ```
    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
        let mut wr = WriterFormatter { inner: f };
        crate::print::to_writer(&mut wr, self).map_err(|_| fmt::Error)
    }
}

impl str::FromStr for Value {
    /// Parse an S-expression value from a string.
    type Err = crate::parse::Error;

    fn from_str(s: &str) -> Result<Self, Self::Err> {
        crate::parse::from_str(s)
    }
}

mod from;
mod index;
mod partial_eq;

#[cfg(test)]
mod tests;