1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
//! Configuration options for writing floats.

use core::{mem, num};
use lexical_util::ascii::{is_valid_ascii, is_valid_letter_slice};
use lexical_util::constants::FormattedSize;
use lexical_util::error::Error;
use lexical_util::format::NumberFormat;
use lexical_util::options::{self, WriteOptions};
use lexical_util::result::Result;
use static_assertions::const_assert;

/// Type with the exact same size as a `usize`.
pub type OptionUsize = Option<num::NonZeroUsize>;

/// Type with the exact same size as a `i32`.
pub type OptionI32 = Option<num::NonZeroI32>;

// Ensure the sizes are identical.
const_assert!(mem::size_of::<OptionUsize>() == mem::size_of::<usize>());
const_assert!(mem::size_of::<OptionI32>() == mem::size_of::<i32>());

/// Enumeration for how to round floats with precision control.
#[derive(Debug, Copy, Clone, PartialEq, Eq)]
pub enum RoundMode {
    /// Round to the nearest float string with the given number of significant digits.
    Round,
    /// Truncate the float string with the given number of significant digits.
    Truncate,
}

/// Maximum length for a special string.
const MAX_SPECIAL_STRING_LENGTH: usize = 50;
const_assert!(MAX_SPECIAL_STRING_LENGTH < f32::FORMATTED_SIZE_DECIMAL);

/// Builder for `Options`.
#[derive(Debug, Clone, PartialEq, Eq)]
pub struct OptionsBuilder {
    /// Maximum number of significant digits to write.
    /// If not set, it defaults to the algorithm's default.
    max_significant_digits: OptionUsize,
    /// Minimum number of significant digits to write.
    /// If not set, it defaults to the algorithm's default.
    /// Note that this isn't fully respected: if you wish to format
    /// `0.1` with 25 significant digits, the correct result **should**
    /// be `0.100000000000000005551115`. However, we would output
    /// `0.100000000000000000000000`, which is still the nearest float.
    min_significant_digits: OptionUsize,
    /// Maximum exponent prior to using scientific notation.
    /// This is ignored if the exponent base is not the same as the mantissa radix.
    /// If not provided, use the algorithm's default.
    positive_exponent_break: OptionI32,
    /// Minimum exponent prior to using scientific notation.
    /// This is ignored if the exponent base is not the same as the mantissa radix.
    /// If not provided, use the algorithm's default.
    negative_exponent_break: OptionI32,
    /// Rounding mode for writing digits with precision control.
    round_mode: RoundMode,
    /// Trim the trailing ".0" from integral float strings.
    trim_floats: bool,
    /// Character to designate the exponent component of a float.
    exponent: u8,
    /// Character to separate the integer from the fraction components.
    decimal_point: u8,
    /// String representation of Not A Number, aka `NaN`.
    nan_string: Option<&'static [u8]>,
    /// String representation of `Infinity`.
    inf_string: Option<&'static [u8]>,
}

impl OptionsBuilder {
    // CONSTRUCTORS

    #[inline(always)]
    pub const fn new() -> Self {
        Self {
            max_significant_digits: None,
            min_significant_digits: None,
            positive_exponent_break: None,
            negative_exponent_break: None,
            round_mode: RoundMode::Round,
            trim_floats: false,
            exponent: b'e',
            decimal_point: b'.',
            nan_string: Some(b"NaN"),
            inf_string: Some(b"inf"),
        }
    }

    // GETTERS

    /// Get the maximum number of significant digits to write.
    #[inline(always)]
    pub const fn get_max_significant_digits(&self) -> OptionUsize {
        self.max_significant_digits
    }

    /// Get the minimum number of significant digits to write.
    #[inline(always)]
    pub const fn get_min_significant_digits(&self) -> OptionUsize {
        self.min_significant_digits
    }

    /// Get the maximum exponent prior to using scientific notation.
    #[inline(always)]
    pub const fn get_positive_exponent_break(&self) -> OptionI32 {
        self.positive_exponent_break
    }

    /// Get the minimum exponent prior to using scientific notation.
    #[inline(always)]
    pub const fn get_negative_exponent_break(&self) -> OptionI32 {
        self.negative_exponent_break
    }

    /// Get the rounding mode for writing digits with precision control.
    #[inline(always)]
    pub const fn get_round_mode(&self) -> RoundMode {
        self.round_mode
    }

    /// Get if we should trim a trailing `".0"` from floats.
    #[inline(always)]
    pub const fn get_trim_floats(&self) -> bool {
        self.trim_floats
    }

    /// Get the character to designate the exponent component of a float.
    #[inline(always)]
    pub const fn get_exponent(&self) -> u8 {
        self.exponent
    }

    /// Get the character to separate the integer from the fraction components.
    #[inline(always)]
    pub const fn get_decimal_point(&self) -> u8 {
        self.decimal_point
    }

    /// Get the string representation for `NaN`.
    #[inline(always)]
    pub const fn get_nan_string(&self) -> Option<&'static [u8]> {
        self.nan_string
    }

    /// Get the short string representation for `Infinity`.
    #[inline(always)]
    pub const fn get_inf_string(&self) -> Option<&'static [u8]> {
        self.inf_string
    }

    // SETTERS

    /// Set the maximum number of significant digits to write.
    #[inline(always)]
    pub const fn max_significant_digits(mut self, max_significant_digits: OptionUsize) -> Self {
        self.max_significant_digits = max_significant_digits;
        self
    }

    /// Set the minimum number of significant digits to write.
    #[inline(always)]
    pub const fn min_significant_digits(mut self, min_significant_digits: OptionUsize) -> Self {
        self.min_significant_digits = min_significant_digits;
        self
    }

    /// Set the maximum exponent prior to using scientific notation.
    #[inline(always)]
    pub const fn positive_exponent_break(mut self, positive_exponent_break: OptionI32) -> Self {
        self.positive_exponent_break = positive_exponent_break;
        self
    }

    /// Set the minimum exponent prior to using scientific notation.
    #[inline(always)]
    pub const fn negative_exponent_break(mut self, negative_exponent_break: OptionI32) -> Self {
        self.negative_exponent_break = negative_exponent_break;
        self
    }

    /// Set the rounding mode for writing digits with precision control.
    #[inline(always)]
    pub const fn round_mode(mut self, round_mode: RoundMode) -> Self {
        self.round_mode = round_mode;
        self
    }

    /// Set if we should trim a trailing `".0"` from floats.
    #[inline(always)]
    pub const fn trim_floats(mut self, trim_floats: bool) -> Self {
        self.trim_floats = trim_floats;
        self
    }

    /// Set the character to designate the exponent component of a float.
    #[inline(always)]
    pub const fn exponent(mut self, exponent: u8) -> Self {
        self.exponent = exponent;
        self
    }

    /// Set the character to separate the integer from the fraction components.
    #[inline(always)]
    pub const fn decimal_point(mut self, decimal_point: u8) -> Self {
        self.decimal_point = decimal_point;
        self
    }

    /// Set the string representation for `NaN`.
    #[inline(always)]
    pub const fn nan_string(mut self, nan_string: Option<&'static [u8]>) -> Self {
        self.nan_string = nan_string;
        self
    }

    /// Set the string representation for `Infinity`.
    #[inline(always)]
    pub const fn inf_string(mut self, inf_string: Option<&'static [u8]>) -> Self {
        self.inf_string = inf_string;
        self
    }

    // BUILDERS

    /// Determine if `nan_str` is valid.
    #[inline(always)]
    #[allow(clippy::if_same_then_else, clippy::needless_bool)]
    pub const fn nan_str_is_valid(&self) -> bool {
        if self.nan_string.is_none() {
            return true;
        }

        let nan = unwrap_str(self.nan_string);
        let length = nan.len();
        if length == 0 || length > MAX_SPECIAL_STRING_LENGTH {
            false
        } else if !matches!(nan[0], b'N' | b'n') {
            false
        } else if !is_valid_letter_slice(nan) {
            false
        } else {
            true
        }
    }

    /// Determine if `inf_str` is valid.
    #[inline(always)]
    #[allow(clippy::if_same_then_else, clippy::needless_bool)]
    pub const fn inf_str_is_valid(&self) -> bool {
        if self.inf_string.is_none() {
            return true;
        }

        let inf = unwrap_str(self.inf_string);
        let length = inf.len();
        if length == 0 || length > MAX_SPECIAL_STRING_LENGTH {
            false
        } else if !matches!(inf[0], b'I' | b'i') {
            false
        } else if !is_valid_letter_slice(inf) {
            false
        } else {
            true
        }
    }

    /// Check if the builder state is valid.
    #[inline(always)]
    #[allow(clippy::if_same_then_else, clippy::needless_bool)]
    pub const fn is_valid(&self) -> bool {
        if !is_valid_ascii(self.exponent) {
            false
        } else if !is_valid_ascii(self.decimal_point) {
            false
        } else if !self.nan_str_is_valid() {
            false
        } else if !self.inf_str_is_valid() {
            false
        } else {
            true
        }
    }

    /// Build the Options struct with bounds validation.
    ///
    /// # Safety
    ///
    /// Safe as long as `is_valid` is true. If `nan_string` or `inf_string`
    /// are too long, writing special floats may lead to buffer overflows,
    /// and therefore severe security vulnerabilities.
    #[inline(always)]
    pub const unsafe fn build_unchecked(&self) -> Options {
        Options {
            max_significant_digits: self.max_significant_digits,
            min_significant_digits: self.min_significant_digits,
            positive_exponent_break: self.positive_exponent_break,
            negative_exponent_break: self.negative_exponent_break,
            round_mode: self.round_mode,
            trim_floats: self.trim_floats,
            exponent: self.exponent,
            decimal_point: self.decimal_point,
            nan_string: self.nan_string,
            inf_string: self.inf_string,
        }
    }

    /// Build the Options struct.
    #[inline(always)]
    #[allow(clippy::if_same_then_else)]
    pub const fn build(&self) -> Result<Options> {
        if self.nan_string.is_some() {
            let nan = unwrap_str(self.nan_string);
            if nan.is_empty() || !matches!(nan[0], b'N' | b'n') {
                return Err(Error::InvalidNanString);
            } else if !is_valid_letter_slice(nan) {
                return Err(Error::InvalidNanString);
            } else if nan.len() > MAX_SPECIAL_STRING_LENGTH {
                return Err(Error::NanStringTooLong);
            }
        }

        if self.inf_string.is_some() {
            let inf = unwrap_str(self.inf_string);
            if inf.is_empty() || !matches!(inf[0], b'I' | b'i') {
                return Err(Error::InvalidInfString);
            } else if !is_valid_letter_slice(inf) {
                return Err(Error::InvalidInfString);
            } else if inf.len() > MAX_SPECIAL_STRING_LENGTH {
                return Err(Error::InfStringTooLong);
            }
        }

        let min_digits = unwrap_or_zero_usize(self.min_significant_digits);
        let max_digits = unwrap_or_max_usize(self.max_significant_digits);
        if max_digits < min_digits {
            Err(Error::InvalidFloatPrecision)
        } else if unwrap_or_zero_i32(self.negative_exponent_break) > 0 {
            Err(Error::InvalidNegativeExponentBreak)
        } else if unwrap_or_zero_i32(self.positive_exponent_break) < 0 {
            Err(Error::InvalidPositiveExponentBreak)
        } else if !is_valid_ascii(self.exponent) {
            Err(Error::InvalidExponentSymbol)
        } else if !is_valid_ascii(self.decimal_point) {
            Err(Error::InvalidDecimalPoint)
        } else {
            // SAFETY: always safe, since it must be valid.
            Ok(unsafe { self.build_unchecked() })
        }
    }
}

impl Default for OptionsBuilder {
    #[inline(always)]
    fn default() -> Self {
        Self::new()
    }
}

/// Options to customize writing floats.
///
/// # Examples
///
/// ```rust
/// # extern crate lexical_write_float;
/// use lexical_write_float::Options;
///
/// # pub fn main() {
/// let options = Options::builder()
///     .trim_floats(true)
///     .nan_string(Some(b"NaN"))
///     .inf_string(Some(b"Inf"))
///     .build()
///     .unwrap();
/// # }
/// ```
#[derive(Debug, Clone, PartialEq, Eq)]
pub struct Options {
    /// Maximum number of significant digits to write.
    /// If not set, it defaults to the algorithm's default.
    max_significant_digits: OptionUsize,
    /// Minimum number of significant digits to write.
    /// If not set, it defaults to the algorithm's default.
    min_significant_digits: OptionUsize,
    /// Maximum exponent prior to using scientific notation.
    /// This is ignored if the exponent base is not the same as the mantissa radix.
    /// If not provided, use the algorithm's default.
    positive_exponent_break: OptionI32,
    /// Minimum exponent prior to using scientific notation.
    /// This is ignored if the exponent base is not the same as the mantissa radix.
    /// If not provided, use the algorithm's default.
    negative_exponent_break: OptionI32,
    /// Rounding mode for writing digits with precision control.
    round_mode: RoundMode,
    /// Trim the trailing ".0" from integral float strings.
    trim_floats: bool,
    /// Character to designate the exponent component of a float.
    exponent: u8,
    /// Character to separate the integer from the fraction components.
    decimal_point: u8,
    /// String representation of Not A Number, aka `NaN`.
    nan_string: Option<&'static [u8]>,
    /// String representation of `Infinity`.
    inf_string: Option<&'static [u8]>,
}

impl Options {
    // CONSTRUCTORS

    /// Create options with default values.
    #[inline(always)]
    pub const fn new() -> Self {
        // SAFETY: always safe since it uses the default arguments.
        unsafe { Self::builder().build_unchecked() }
    }

    /// Create the default options for a given radix.
    #[inline(always)]
    #[cfg(feature = "power-of-two")]
    pub const fn from_radix(radix: u8) -> Self {
        // Need to determine the correct exponent character ('e' or '^'),
        // since the default character is `e` normally, but this is a valid
        // digit for radix >= 15.
        let mut builder = Self::builder();
        if radix >= 15 {
            builder = builder.exponent(b'^');
        }
        // SAFETY: always safe since it uses the default arguments.
        unsafe { builder.build_unchecked() }
    }

    // GETTERS

    /// Check if the options state is valid.
    #[inline(always)]
    pub const fn is_valid(&self) -> bool {
        self.rebuild().is_valid()
    }

    /// Get the maximum number of significant digits to write.
    #[inline(always)]
    pub const fn max_significant_digits(&self) -> OptionUsize {
        self.max_significant_digits
    }

    /// Get the minimum number of significant digits to write.
    #[inline(always)]
    pub const fn min_significant_digits(&self) -> OptionUsize {
        self.min_significant_digits
    }

    /// Get the maximum exponent prior to using scientific notation.
    #[inline(always)]
    pub const fn positive_exponent_break(&self) -> OptionI32 {
        self.positive_exponent_break
    }

    /// Get the minimum exponent prior to using scientific notation.
    #[inline(always)]
    pub const fn negative_exponent_break(&self) -> OptionI32 {
        self.negative_exponent_break
    }

    /// Get the rounding mode for writing digits with precision control.
    #[inline(always)]
    pub const fn round_mode(&self) -> RoundMode {
        self.round_mode
    }

    /// Get if we should trim a trailing `".0"` from floats.
    #[inline(always)]
    pub const fn trim_floats(&self) -> bool {
        self.trim_floats
    }

    /// Get the character to designate the exponent component of a float.
    #[inline(always)]
    pub const fn exponent(&self) -> u8 {
        self.exponent
    }

    /// Get the character to separate the integer from the fraction components.
    #[inline(always)]
    pub const fn decimal_point(&self) -> u8 {
        self.decimal_point
    }

    /// Get the string representation for `NaN`.
    #[inline(always)]
    pub const fn nan_string(&self) -> Option<&'static [u8]> {
        self.nan_string
    }

    /// Get the short string representation for `Infinity`.
    #[inline(always)]
    pub const fn inf_string(&self) -> Option<&'static [u8]> {
        self.inf_string
    }

    // SETTERS

    /// Set the maximum number of significant digits to write.
    /// Unsafe, use the builder API for option validation.
    ///
    /// # Safety
    ///
    /// Always safe, just marked as unsafe for API compatibility.
    #[inline(always)]
    pub unsafe fn set_max_significant_digits(&mut self, max_significant_digits: OptionUsize) {
        self.max_significant_digits = max_significant_digits
    }

    /// Set the minimum number of significant digits to write.
    /// Unsafe, use the builder API for option validation.
    ///
    /// # Safety
    ///
    /// Always safe, just marked as unsafe for API compatibility.
    #[inline(always)]
    pub unsafe fn set_min_significant_digits(&mut self, min_significant_digits: OptionUsize) {
        self.min_significant_digits = min_significant_digits
    }

    /// Set the maximum exponent prior to using scientific notation.
    ///
    /// # Safety
    ///
    /// Always safe, just marked as unsafe for API compatibility.
    #[inline(always)]
    pub unsafe fn set_positive_exponent_break(&mut self, positive_exponent_break: OptionI32) {
        self.positive_exponent_break = positive_exponent_break;
    }

    /// Set the minimum exponent prior to using scientific notation.
    ///
    /// # Safety
    ///
    /// Always safe, just marked as unsafe for API compatibility.
    #[inline(always)]
    pub unsafe fn set_negative_exponent_break(&mut self, negative_exponent_break: OptionI32) {
        self.negative_exponent_break = negative_exponent_break;
    }

    /// Set the rounding mode for writing digits with precision control.
    ///
    /// # Safety
    ///
    /// Always safe, just marked as unsafe for API compatibility.
    #[inline(always)]
    pub unsafe fn set_round_mode(&mut self, round_mode: RoundMode) {
        self.round_mode = round_mode;
    }

    /// Set if we should trim a trailing `".0"` from floats.
    /// Unsafe, use the builder API for option validation.
    ///
    /// # Safety
    ///
    /// Always safe, just marked as unsafe for API compatibility.
    #[inline(always)]
    pub unsafe fn set_trim_floats(&mut self, trim_floats: bool) {
        self.trim_floats = trim_floats;
    }

    /// Set the character to designate the exponent component of a float.
    ///
    /// # Safety
    ///
    /// Always safe, but may produce invalid output if the exponent
    /// is not a valid ASCII character.
    #[inline(always)]
    pub unsafe fn set_exponent(&mut self, exponent: u8) {
        self.exponent = exponent;
    }

    /// Set the character to separate the integer from the fraction components.
    ///
    /// # Safety
    ///
    /// Always safe, but may produce invalid output if the decimal point
    /// is not a valid ASCII character.
    #[inline(always)]
    pub unsafe fn set_decimal_point(&mut self, decimal_point: u8) {
        self.decimal_point = decimal_point;
    }

    /// Set the string representation for `NaN`.
    /// Unsafe, use the builder API for option validation.
    ///
    /// # Safety
    ///
    /// Unsafe if `nan_string.len() > MAX_SPECIAL_STRING_LENGTH`. This might
    /// cause a special string larger than the buffer length to be written,
    /// causing a buffer overflow, potentially a severe security vulnerability.
    #[inline(always)]
    pub unsafe fn set_nan_string(&mut self, nan_string: Option<&'static [u8]>) {
        self.nan_string = nan_string
    }

    /// Set the short string representation for `Infinity`
    /// Unsafe, use the builder API for option validation.
    ///
    /// # Safety
    ///
    /// Unsafe if `nan_string.len() > MAX_SPECIAL_STRING_LENGTH`. This might
    /// cause a special string larger than the buffer length to be written,
    /// causing a buffer overflow, potentially a severe security vulnerability.
    #[inline(always)]
    pub unsafe fn set_inf_string(&mut self, inf_string: Option<&'static [u8]>) {
        self.inf_string = inf_string
    }

    // BUILDERS

    /// Get WriteFloatOptionsBuilder as a static function.
    #[inline(always)]
    pub const fn builder() -> OptionsBuilder {
        OptionsBuilder::new()
    }

    /// Create OptionsBuilder using existing values.
    #[inline(always)]
    pub const fn rebuild(&self) -> OptionsBuilder {
        OptionsBuilder {
            max_significant_digits: self.max_significant_digits,
            min_significant_digits: self.min_significant_digits,
            positive_exponent_break: self.positive_exponent_break,
            negative_exponent_break: self.negative_exponent_break,
            round_mode: self.round_mode,
            trim_floats: self.trim_floats,
            exponent: self.exponent,
            decimal_point: self.decimal_point,
            nan_string: self.nan_string,
            inf_string: self.inf_string,
        }
    }
}

impl Default for Options {
    #[inline(always)]
    fn default() -> Self {
        Self::new()
    }
}

impl WriteOptions for Options {
    #[inline(always)]
    fn is_valid(&self) -> bool {
        Self::is_valid(self)
    }

    #[inline(always)]
    fn buffer_size<T: FormattedSize, const FORMAT: u128>(&self) -> usize {
        let format = NumberFormat::<{ FORMAT }> {};

        // At least 2 for the decimal point and sign.
        let mut count: usize = 2;

        // First need to calculate maximum number of digits from leading or
        // trailing zeros, IE, the exponent break.
        if !format.no_exponent_notation() {
            let min_exp = self.negative_exponent_break().map_or(-5, |x| x.get());
            let max_exp = self.positive_exponent_break().map_or(9, |x| x.get());
            let exp = min_exp.abs().max(max_exp) as usize;
            if cfg!(feature = "power-of-two") && exp < 13 {
                // 11 for the exponent digits in binary, 1 for the sign, 1 for the symbol
                count += 13;
            } else if exp < 5 {
                // 3 for the exponent digits in decimal, 1 for the sign, 1 for the symbol
                count += 5;
            } else {
                // More leading or trailing zeros than the exponent digits.
                count += exp;
            }
        } else if cfg!(feature = "power-of-two") {
            // Min is 2^-1075.
            count += 1075;
        } else {
            // Min is 10^-324.
            count += 324;
        }

        // Now add the number of significant digits.
        let radix = format.radix();
        let formatted_digits = if radix == 10 {
            // Really should be 18, but add some extra to be cautious.
            28
        } else {
            //  BINARY:
            //      53 significant mantissa bits for binary, add a few extra.
            //  RADIX:
            //      Our limit is `delta`. The maximum relative delta is 2.22e-16,
            //      around 1. If we have values below 1, our delta is smaller, but
            //      the max fraction is also a lot smaller. Above, and our fraction
            //      must be < 1.0, so our delta is less significant. Therefore,
            //      if our fraction is just less than 1, for a float near 2.0,
            //      we can do at **maximum** 33 digits (for base 3). Let's just
            //      assume it's a lot higher, and go with 64.
            64
        };
        let digits = if let Some(max_digits) = self.max_significant_digits() {
            formatted_digits.min(max_digits.get())
        } else {
            formatted_digits
        };
        let digits = if let Some(min_digits) = self.min_significant_digits() {
            digits.max(min_digits.get())
        } else {
            formatted_digits
        };
        count += digits;

        count
    }
}

/// Define unwrap_or_zero for a custom type.
macro_rules! unwrap_or_zero {
    ($name:ident, $opt:ident, $t:ident) => {
        /// Unwrap `Option` as a const fn.
        #[inline(always)]
        const fn $name(option: $opt) -> $t {
            match option {
                Some(x) => x.get(),
                None => 0,
            }
        }
    };
}

unwrap_or_zero!(unwrap_or_zero_usize, OptionUsize, usize);
unwrap_or_zero!(unwrap_or_zero_i32, OptionI32, i32);

/// Unwrap `Option` as a const fn.
#[inline(always)]
const fn unwrap_or_max_usize(option: OptionUsize) -> usize {
    match option {
        Some(x) => x.get(),
        None => usize::MAX,
    }
}

/// Unwrap `Option` as a const fn.
#[inline(always)]
const fn unwrap_str(option: Option<&'static [u8]>) -> &'static [u8] {
    match option {
        Some(x) => x,
        None => &[],
    }
}

// PRE-DEFINED CONSTANTS
// ---------------------

// Only constants that differ from the standard version are included.
// SAFETY: all of these are safe, since they are checked to be valid
// after calling `build_unchecked`. Furthermore, even though the methods
// are marked as `unsafe`, none of the produced options can cause memory
// safety issues since the special strings are smaller than the buffer size.

/// Standard number format.
#[rustfmt::skip]
pub const STANDARD: Options = Options::new();
const_assert!(STANDARD.is_valid());

/// Numerical format with a decimal comma.
/// This is the standard numerical format for most of the world.
#[rustfmt::skip]
pub const DECIMAL_COMMA: Options = unsafe {
    Options::builder()
        .decimal_point(b',')
        .build_unchecked()
};
const_assert!(DECIMAL_COMMA.is_valid());

/// Numerical format for hexadecimal floats, which use a `p` exponent.
#[rustfmt::skip]
pub const HEX_FLOAT: Options = unsafe {
    Options::builder()
        .exponent(b'p')
        .build_unchecked()
};
const_assert!(HEX_FLOAT.is_valid());

/// Numerical format where `^` is used as the exponent notation character.
/// This isn't very common, but is useful when `e` or `p` are valid digits.
#[rustfmt::skip]
pub const CARAT_EXPONENT: Options = unsafe {
    Options::builder()
        .exponent(b'^')
        .build_unchecked()
};
const_assert!(CARAT_EXPONENT.is_valid());

/// Number format for a Rust literal floating-point number.
#[rustfmt::skip]
pub const RUST_LITERAL: Options = unsafe {
    Options::builder()
        .nan_string(options::RUST_LITERAL)
        .inf_string(options::RUST_LITERAL)
        .build_unchecked()
};
const_assert!(RUST_LITERAL.is_valid());

/// Number format for a Python literal floating-point number.
#[rustfmt::skip]
pub const PYTHON_LITERAL: Options = unsafe {
    Options::builder()
        .nan_string(options::PYTHON_LITERAL)
        .inf_string(options::PYTHON_LITERAL)
        .build_unchecked()
};
const_assert!(PYTHON_LITERAL.is_valid());

/// Number format for a C++ literal floating-point number.
#[rustfmt::skip]
pub const CXX_LITERAL: Options = unsafe {
    Options::builder()
        .nan_string(options::CXX_LITERAL_NAN)
        .inf_string(options::CXX_LITERAL_INF)
        .build_unchecked()
};
const_assert!(CXX_LITERAL.is_valid());

/// Number format for a C literal floating-point number.
#[rustfmt::skip]
pub const C_LITERAL: Options = unsafe {
    Options::builder()
        .nan_string(options::C_LITERAL_NAN)
        .inf_string(options::C_LITERAL_INF)
        .build_unchecked()
};
const_assert!(CXX_LITERAL.is_valid());

/// Number format for a Ruby literal floating-point number.
#[rustfmt::skip]
pub const RUBY_LITERAL: Options = unsafe {
    Options::builder()
        .nan_string(options::RUBY)
        .inf_string(options::RUBY)
        .build_unchecked()
};
const_assert!(RUBY_LITERAL.is_valid());

/// Number format to parse a Ruby float from string.
#[rustfmt::skip]
pub const RUBY_STRING: Options = unsafe {
    Options::builder()
        .nan_string(options::RUBY)
        .inf_string(options::RUBY)
        .build_unchecked()
};
const_assert!(RUBY_STRING.is_valid());

/// Number format for a Swift literal floating-point number.
#[rustfmt::skip]
pub const SWIFT_LITERAL: Options = unsafe {
    Options::builder()
        .nan_string(options::SWIFT_LITERAL)
        .inf_string(options::SWIFT_LITERAL)
        .build_unchecked()
};
const_assert!(SWIFT_LITERAL.is_valid());

/// Number format for a Go literal floating-point number.
#[rustfmt::skip]
pub const GO_LITERAL: Options = unsafe {
    Options::builder()
        .nan_string(options::GO_LITERAL)
        .inf_string(options::GO_LITERAL)
        .build_unchecked()
};
const_assert!(GO_LITERAL.is_valid());

/// Number format for a Haskell literal floating-point number.
#[rustfmt::skip]
pub const HASKELL_LITERAL: Options = unsafe {
    Options::builder()
        .nan_string(options::HASKELL_LITERAL)
        .inf_string(options::HASKELL_LITERAL)
        .build_unchecked()
};
const_assert!(HASKELL_LITERAL.is_valid());

/// Number format to parse a Haskell float from string.
#[rustfmt::skip]
pub const HASKELL_STRING: Options = unsafe {
    Options::builder()
        .inf_string(options::HASKELL_STRING_INF)
        .build_unchecked()
};
const_assert!(HASKELL_STRING.is_valid());

/// Number format for a Javascript literal floating-point number.
#[rustfmt::skip]
pub const JAVASCRIPT_LITERAL: Options = unsafe {
    Options::builder()
        .inf_string(options::JAVASCRIPT_INF)
        .build_unchecked()
};
const_assert!(JAVASCRIPT_LITERAL.is_valid());

/// Number format to parse a Javascript float from string.
#[rustfmt::skip]
pub const JAVASCRIPT_STRING: Options = unsafe {
    Options::builder()
        .inf_string(options::JAVASCRIPT_INF)
        .build_unchecked()
};
const_assert!(JAVASCRIPT_STRING.is_valid());

/// Number format for a Perl literal floating-point number.
#[rustfmt::skip]
pub const PERL_LITERAL: Options = unsafe {
    Options::builder()
        .nan_string(options::PERL_LITERAL)
        .inf_string(options::PERL_LITERAL)
        .build_unchecked()
};
const_assert!(PERL_LITERAL.is_valid());

/// Number format for a PHP literal floating-point number.
#[rustfmt::skip]
pub const PHP_LITERAL: Options = unsafe {
    Options::builder()
        .nan_string(options::PHP_LITERAL_NAN)
        .inf_string(options::PHP_LITERAL_INF)
        .build_unchecked()
};
const_assert!(PHP_LITERAL.is_valid());

/// Number format for a Java literal floating-point number.
#[rustfmt::skip]
pub const JAVA_LITERAL: Options = unsafe {
    Options::builder()
        .nan_string(options::JAVA_LITERAL)
        .inf_string(options::JAVA_LITERAL)
        .build_unchecked()
};
const_assert!(JAVA_LITERAL.is_valid());

/// Number format to parse a Java float from string.
#[rustfmt::skip]
pub const JAVA_STRING: Options = unsafe {
    Options::builder()
        .inf_string(options::JAVA_STRING_INF)
        .build_unchecked()
};
const_assert!(JAVA_STRING.is_valid());

/// Number format for an R literal floating-point number.
#[rustfmt::skip]
pub const R_LITERAL: Options = unsafe {
    Options::builder()
        .inf_string(options::R_LITERAL_INF)
        .build_unchecked()
};
const_assert!(R_LITERAL.is_valid());

/// Number format for a Kotlin literal floating-point number.
#[rustfmt::skip]
pub const KOTLIN_LITERAL: Options = unsafe {
    Options::builder()
        .nan_string(options::KOTLIN_LITERAL)
        .inf_string(options::KOTLIN_LITERAL)
        .build_unchecked()
};
const_assert!(KOTLIN_LITERAL.is_valid());

/// Number format to parse a Kotlin float from string.
#[rustfmt::skip]
pub const KOTLIN_STRING: Options = unsafe {
    Options::builder()
        .inf_string(options::KOTLIN_STRING_INF)
        .build_unchecked()
};
const_assert!(KOTLIN_STRING.is_valid());

/// Number format for a Julia literal floating-point number.
#[rustfmt::skip]
pub const JULIA_LITERAL: Options = unsafe {
    Options::builder()
        .inf_string(options::JULIA_LITERAL_INF)
        .build_unchecked()
};
const_assert!(JULIA_LITERAL.is_valid());

/// Number format for a C# literal floating-point number.
#[rustfmt::skip]
pub const CSHARP_LITERAL: Options = unsafe {
    Options::builder()
        .nan_string(options::CSHARP_LITERAL)
        .inf_string(options::CSHARP_LITERAL)
        .build_unchecked()
};
const_assert!(CSHARP_LITERAL.is_valid());

/// Number format to parse a C# float from string.
#[rustfmt::skip]
pub const CSHARP_STRING: Options = unsafe {
    Options::builder()
        .inf_string(options::CSHARP_STRING_INF)
        .build_unchecked()
};
const_assert!(CSHARP_STRING.is_valid());

/// Number format for a Kawa literal floating-point number.
#[rustfmt::skip]
pub const KAWA_LITERAL: Options = unsafe {
    Options::builder()
        .nan_string(options::KAWA)
        .inf_string(options::KAWA)
        .build_unchecked()
};
const_assert!(KAWA_LITERAL.is_valid());

/// Number format to parse a Kawa float from string.
#[rustfmt::skip]
pub const KAWA_STRING: Options = unsafe {
    Options::builder()
        .nan_string(options::KAWA)
        .inf_string(options::KAWA)
        .build_unchecked()
};
const_assert!(KAWA_STRING.is_valid());

/// Number format for a Gambit-C literal floating-point number.
#[rustfmt::skip]
pub const GAMBITC_LITERAL: Options = unsafe {
    Options::builder()
        .nan_string(options::GAMBITC)
        .inf_string(options::GAMBITC)
        .build_unchecked()
};
const_assert!(GAMBITC_LITERAL.is_valid());

/// Number format to parse a Gambit-C float from string.
#[rustfmt::skip]
pub const GAMBITC_STRING: Options = unsafe {
    Options::builder()
        .nan_string(options::GAMBITC)
        .inf_string(options::GAMBITC)
        .build_unchecked()
};
const_assert!(GAMBITC_STRING.is_valid());

/// Number format for a Guile literal floating-point number.
#[rustfmt::skip]
pub const GUILE_LITERAL: Options = unsafe {
    Options::builder()
        .nan_string(options::GUILE)
        .inf_string(options::GUILE)
        .build_unchecked()
};
const_assert!(GUILE_LITERAL.is_valid());

/// Number format to parse a Guile float from string.
#[rustfmt::skip]
pub const GUILE_STRING: Options = unsafe {
    Options::builder()
        .nan_string(options::GUILE)
        .inf_string(options::GUILE)
        .build_unchecked()
};
const_assert!(GUILE_STRING.is_valid());

/// Number format for a Clojure literal floating-point number.
#[rustfmt::skip]
pub const CLOJURE_LITERAL: Options = unsafe {
    Options::builder()
        .nan_string(options::CLOJURE_LITERAL)
        .inf_string(options::CLOJURE_LITERAL)
        .build_unchecked()
};
const_assert!(CLOJURE_LITERAL.is_valid());

/// Number format to parse a Clojure float from string.
#[rustfmt::skip]
pub const CLOJURE_STRING: Options = unsafe {
    Options::builder()
        .inf_string(options::CLOJURE_STRING_INF)
        .build_unchecked()
};
const_assert!(CLOJURE_STRING.is_valid());

/// Number format for an Erlang literal floating-point number.
#[rustfmt::skip]
pub const ERLANG_LITERAL: Options = unsafe {
    Options::builder()
        .nan_string(options::ERLANG_LITERAL_NAN)
        .build_unchecked()
};
const_assert!(ERLANG_LITERAL.is_valid());

/// Number format to parse an Erlang float from string.
#[rustfmt::skip]
pub const ERLANG_STRING: Options = unsafe {
    Options::builder()
        .nan_string(options::ERLANG_STRING)
        .inf_string(options::ERLANG_STRING)
        .build_unchecked()
};
const_assert!(ERLANG_STRING.is_valid());

/// Number format for an Elm literal floating-point number.
#[rustfmt::skip]
pub const ELM_LITERAL: Options = unsafe {
    Options::builder()
        .nan_string(options::ELM_LITERAL)
        .inf_string(options::ELM_LITERAL)
        .build_unchecked()
};
const_assert!(ELM_LITERAL.is_valid());

/// Number format to parse an Elm float from string.
#[rustfmt::skip]
pub const ELM_STRING: Options = unsafe {
    Options::builder()
        .nan_string(options::ELM_STRING_NAN)
        .inf_string(options::ELM_STRING_INF)
        .build_unchecked()
};
const_assert!(ELM_STRING.is_valid());

/// Number format for a Scala literal floating-point number.
#[rustfmt::skip]
pub const SCALA_LITERAL: Options = unsafe {
    Options::builder()
        .nan_string(options::SCALA_LITERAL)
        .inf_string(options::SCALA_LITERAL)
        .build_unchecked()
};
const_assert!(SCALA_LITERAL.is_valid());

/// Number format to parse a Scala float from string.
#[rustfmt::skip]
pub const SCALA_STRING: Options = unsafe {
    Options::builder()
        .inf_string(options::SCALA_STRING_INF)
        .build_unchecked()
};
const_assert!(SCALA_STRING.is_valid());

/// Number format for an Elixir literal floating-point number.
#[rustfmt::skip]
pub const ELIXIR_LITERAL: Options = unsafe {
    Options::builder()
        .nan_string(options::ELIXIR)
        .inf_string(options::ELIXIR)
        .build_unchecked()
};
const_assert!(ELIXIR_LITERAL.is_valid());

/// Number format to parse an Elixir float from string.
#[rustfmt::skip]
pub const ELIXIR_STRING: Options = unsafe {
    Options::builder()
        .nan_string(options::ELIXIR)
        .inf_string(options::ELIXIR)
        .build_unchecked()
};
const_assert!(ELIXIR_STRING.is_valid());

/// Number format for a FORTRAN literal floating-point number.
#[rustfmt::skip]
pub const FORTRAN_LITERAL: Options = unsafe {
    Options::builder()
        .nan_string(options::FORTRAN_LITERAL)
        .inf_string(options::FORTRAN_LITERAL)
        .build_unchecked()
};
const_assert!(FORTRAN_LITERAL.is_valid());

/// Number format for a D literal floating-point number.
#[rustfmt::skip]
pub const D_LITERAL: Options = unsafe {
    Options::builder()
        .nan_string(options::D_LITERAL)
        .inf_string(options::D_LITERAL)
        .build_unchecked()
};
const_assert!(D_LITERAL.is_valid());

/// Number format for a Coffeescript literal floating-point number.
#[rustfmt::skip]
pub const COFFEESCRIPT_LITERAL: Options = unsafe {
    Options::builder()
        .inf_string(options::COFFEESCRIPT_INF)
        .build_unchecked()
};
const_assert!(COFFEESCRIPT_LITERAL.is_valid());

/// Number format to parse a Coffeescript float from string.
#[rustfmt::skip]
pub const COFFEESCRIPT_STRING: Options = unsafe {
    Options::builder()
        .inf_string(options::COFFEESCRIPT_INF)
        .build_unchecked()
};
const_assert!(COFFEESCRIPT_STRING.is_valid());

/// Number format for a COBOL literal floating-point number.
#[rustfmt::skip]
pub const COBOL_LITERAL: Options = unsafe {
    Options::builder()
        .nan_string(options::COBOL)
        .inf_string(options::COBOL)
        .build_unchecked()
};
const_assert!(COBOL_LITERAL.is_valid());

/// Number format to parse a COBOL float from string.
#[rustfmt::skip]
pub const COBOL_STRING: Options = unsafe {
    Options::builder()
        .nan_string(options::COBOL)
        .inf_string(options::COBOL)
        .build_unchecked()
};
const_assert!(COBOL_STRING.is_valid());

/// Number format for an F# literal floating-point number.
#[rustfmt::skip]
pub const FSHARP_LITERAL: Options = unsafe {
    Options::builder()
        .nan_string(options::FSHARP_LITERAL_NAN)
        .inf_string(options::FSHARP_LITERAL_INF)
        .build_unchecked()
};
const_assert!(FSHARP_LITERAL.is_valid());

/// Number format for a Visual Basic literal floating-point number.
#[rustfmt::skip]
pub const VB_LITERAL: Options = unsafe {
    Options::builder()
        .nan_string(options::VB_LITERAL)
        .inf_string(options::VB_LITERAL)
        .build_unchecked()
};
const_assert!(VB_LITERAL.is_valid());

/// Number format to parse a Visual Basic float from string.
#[rustfmt::skip]
pub const VB_STRING: Options = unsafe {
    Options::builder()
        .inf_string(options::VB_STRING_INF)
        .build_unchecked()
};
const_assert!(VB_STRING.is_valid());

/// Number format for an OCaml literal floating-point number.
#[rustfmt::skip]
pub const OCAML_LITERAL: Options = unsafe {
    Options::builder()
        .nan_string(options::OCAML_LITERAL_NAN)
        .inf_string(options::OCAML_LITERAL_INF)
        .build_unchecked()
};
const_assert!(OCAML_LITERAL.is_valid());

/// Number format for an Objective-C literal floating-point number.
#[rustfmt::skip]
pub const OBJECTIVEC_LITERAL: Options = unsafe {
    Options::builder()
        .nan_string(options::OBJECTIVEC)
        .inf_string(options::OBJECTIVEC)
        .build_unchecked()
};
const_assert!(OBJECTIVEC_LITERAL.is_valid());

/// Number format to parse an Objective-C float from string.
#[rustfmt::skip]
pub const OBJECTIVEC_STRING: Options = unsafe {
    Options::builder()
        .nan_string(options::OBJECTIVEC)
        .inf_string(options::OBJECTIVEC)
        .build_unchecked()
};
const_assert!(OBJECTIVEC_STRING.is_valid());

/// Number format for an ReasonML literal floating-point number.
#[rustfmt::skip]
pub const REASONML_LITERAL: Options = unsafe {
    Options::builder()
        .nan_string(options::REASONML_LITERAL_NAN)
        .inf_string(options::REASONML_LITERAL_INF)
        .build_unchecked()
};
const_assert!(REASONML_LITERAL.is_valid());

/// Number format for a MATLAB literal floating-point number.
#[rustfmt::skip]
pub const MATLAB_LITERAL: Options = unsafe {
    Options::builder()
        .inf_string(options::MATLAB_LITERAL_INF)
        .build_unchecked()
};
const_assert!(MATLAB_LITERAL.is_valid());

/// Number format for a Zig literal floating-point number.
#[rustfmt::skip]
pub const ZIG_LITERAL: Options = unsafe {
    Options::builder()
        .nan_string(options::ZIG_LITERAL)
        .inf_string(options::ZIG_LITERAL)
        .build_unchecked()
};
const_assert!(ZIG_LITERAL.is_valid());

/// Number format for a Safe literal floating-point number.
#[rustfmt::skip]
pub const SAGE_LITERAL: Options = unsafe {
    Options::builder()
        .inf_string(options::SAGE_LITERAL_INF)
        .build_unchecked()
};
const_assert!(SAGE_LITERAL.is_valid());

/// Number format for a JSON literal floating-point number.
#[rustfmt::skip]
pub const JSON: Options = unsafe {
    Options::builder()
        .nan_string(options::JSON)
        .inf_string(options::JSON)
        .build_unchecked()
};
const_assert!(JSON.is_valid());

/// Number format for a TOML literal floating-point number.
#[rustfmt::skip]
pub const TOML: Options = unsafe {
    Options::builder()
        .nan_string(options::TOML)
        .inf_string(options::TOML)
        .build_unchecked()
};
const_assert!(TOML.is_valid());

/// Number format for a YAML literal floating-point number.
#[rustfmt::skip]
pub const YAML: Options = JSON;

/// Number format for an XML literal floating-point number.
#[rustfmt::skip]
pub const XML: Options = unsafe {
    Options::builder()
        .inf_string(options::XML_INF)
        .build_unchecked()
};
const_assert!(XML.is_valid());

/// Number format for a SQLite literal floating-point number.
#[rustfmt::skip]
pub const SQLITE: Options = unsafe {
    Options::builder()
        .nan_string(options::SQLITE)
        .inf_string(options::SQLITE)
        .build_unchecked()
};
const_assert!(SQLITE.is_valid());

/// Number format for a PostgreSQL literal floating-point number.
#[rustfmt::skip]
pub const POSTGRESQL: Options = unsafe {
    Options::builder()
        .nan_string(options::POSTGRESQL)
        .inf_string(options::POSTGRESQL)
        .build_unchecked()
};
const_assert!(POSTGRESQL.is_valid());

/// Number format for a MySQL literal floating-point number.
#[rustfmt::skip]
pub const MYSQL: Options = unsafe {
    Options::builder()
        .nan_string(options::MYSQL)
        .inf_string(options::MYSQL)
        .build_unchecked()
};
const_assert!(MYSQL.is_valid());

/// Number format for a MongoDB literal floating-point number.
#[rustfmt::skip]
pub const MONGODB: Options = unsafe {
    Options::builder()
        .inf_string(options::MONGODB_INF)
        .build_unchecked()
};
const_assert!(MONGODB.is_valid());