1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
//! Fast lexical string-to-float conversion routines.
//!
//! The default implementations are highly optimized both for simple
//! strings, as well as input with large numbers of digits. In order to
//! keep performance optimal for simple strings, we avoid overly branching
//! to minimize the number of branches (and therefore optimization checks).
//! Most of the branches in the code are resolved at compile-time, and
//! the resulting ASM as well as comprehensive benchmarks are monitored
//! to ensure there are no regressions.
//!
//! For simple floats, we use an optimized digit parser with multiple-digit
//! optimizations (parsing 8 digits in 3 multiplication instructions),
//! and then use machine floats to create an exact representation with
//! high throughput. In more complex cases, we use the Eisel-Lemire
//! algorithm, described in "Number Parsing at a Gigabyte per Second",
//! available online [here](https://arxiv.org/abs/2101.11408). The
//! Eisel-Lemire algorithm creates an extended representation using a
//! 128-bit (or a fallback 192-bit representation) of the significant
//! digits of the float, scaled to the proper exponent using pre-computed
//! powers-of-5.
//!
//! If the Eisel-Lemire algorithm is unable to unambiguously round the float,
//! we fallback to using optimized, big-integer algorithms, which are
//! described in [Algorithm Approach](#algorithm-approach) below.
//!
//! # Features
//!
//! * `std` - Use the standard library.
//! * `power-of-two` - Add support for parsing power-of-two integer strings.
//! * `radix` - Add support for strings of any radix.
//! * `format` - Add support for parsing custom integer formats.
//! * `compact` - Reduce code size at the cost of performance.
//! * `safe` - Ensure only memory-safe indexing is used.
//! * `nightly` - Enable assembly instructions to control FPU rounding modes.
//!
//! `safe` has a fairly minimal impact, since all parsers are memory-safe
//! by default except where unsafe functionality can trivially be proven
//! correct.
//!
//! # Note
//!
//! Only documented functionality is considered part of the public API:
//! any of the modules, internal functions, or structs may change
//! release-to-release without major or minor version changes. Use
//! internal implementation details at your own risk.
//!
//! lexical-parse-float mainly exists as an implementation detail for
//! lexical-core, although its API is stable. If you would like to use
//! a high-level API that writes to and parses from `String` and `&str`,
//! respectively, please look at [lexical](https://crates.io/crates/lexical)
//! instead. If you would like an API that supports multiple numeric
//! conversions, please look at [lexical-core](https://crates.io/crates/lexical-core)
//! instead.
//!
//! # Machine Float-Only Algorithm
//!
//! We also support an algorithm that uses only machine floats for the
//! fast-path algorithm, however, this may be slower for floats with large
//! exponents since it uses an iterative algorithm. A code sample
//! using this is:
//!
//! ```rust
//! use lexical_parse_float::Options;
//! use lexical_parse_float::format::STANDARD;
//! use lexical_parse_float::parse::ParseFloat;
//!
//! let options = Options::new();
//! let result = f64::fast_path_complete::<{ STANDARD }>(b"1.34000", &options);
//! assert_eq!(result, Ok(1.34000));
//! ```
//!
//! # Version Support
//!
//! The minimum, standard, required version is 1.51.0, for const generic
//! support. Older versions of lexical support older Rust versions.
//!
//! # Design
//!
//! - [Algorithm Approach](https://github.com/Alexhuszagh/rust-lexical/blob/main/lexical-parse-float/docs/Algorithm.md)
//! - [Benchmarks](https://github.com/Alexhuszagh/rust-lexical/blob/main/lexical-parse-float/docs/Benchmarks.md)
//! - [Big Integer Implementation](https://github.com/Alexhuszagh/rust-lexical/blob/main/lexical-parse-float/docs/BigInteger.md)

// We want to have the same safety guarantees as Rust core,
// so we allow unused unsafe to clearly document safety guarantees.
#![allow(unused_unsafe)]
#![cfg_attr(feature = "lint", warn(unsafe_op_in_unsafe_fn))]
#![cfg_attr(not(feature = "std"), no_std)]
#![cfg_attr(feature = "nightly", feature(asm))]

#[macro_use]
mod index;
#[macro_use]
pub mod shared;

pub mod bellerophon;
pub mod bigint;
pub mod binary;
pub mod float;
pub mod fpu;
pub mod lemire;
pub mod libm;
pub mod limits;
pub mod mask;
pub mod number;
pub mod options;
pub mod parse;
pub mod slow;
pub mod table;

mod api;
mod table_bellerophon_decimal;
mod table_bellerophon_radix;
mod table_binary;
mod table_decimal;
mod table_large;
mod table_lemire;
mod table_radix;
mod table_small;

// Re-exports
pub use self::api::{FromLexical, FromLexicalWithOptions};
#[doc(inline)]
pub use self::options::{Options, OptionsBuilder};
#[cfg(feature = "f16")]
pub use lexical_util::bf16::bf16;
pub use lexical_util::error::Error;
#[cfg(feature = "f16")]
pub use lexical_util::f16::f16;
pub use lexical_util::format::{self, NumberFormatBuilder};
pub use lexical_util::options::ParseOptions;
pub use lexical_util::result::Result;