1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
//! Config settings for lexical.

use lib::slice;
use super::rounding::RoundingKind;

// GLOBALS

/// Not a Number literal
///
/// To change the expected representation of NaN as a string,
/// change this value during before using lexical.
///
/// # Safety
///
/// Do not modify this value in threaded-code, as it is not thread-safe.
pub static mut NAN_STRING: &[u8] = b"NaN";

/// Short infinity literal
///
/// To change the expected representation of Infinity as a string,
/// change this value during before using lexical.
///
/// # Safety
///
/// Do not modify this value in threaded-code, as it is not thread-safe.
pub static mut INF_STRING: &[u8] = b"inf";

/// Long infinity literal
///
/// To change the expected backup representation of Infinity as a string,
/// change this value during before using lexical.
///
/// # Safety
///
/// Do not modify this value in threaded-code, as it is not thread-safe.
pub static mut INFINITY_STRING: &[u8] = b"infinity";

/// Default character for scientific notation, used when the radix < 15.
///
/// To change the expected, default character for an exponent,
/// change this value during before using lexical.
///
/// # Safety
///
/// Do not modify this value in threaded-code, as it is not thread-safe.
#[no_mangle]
pub static mut EXPONENT_DEFAULT_CHAR: u8 = b'e';

/// Backup character for scientific notation, used when the radix >= 15.
///
/// For numerical strings of radix >= 15, 'e' or 'E' is a valid digit,
/// and therefore may no longer be used as a marker for the exponent.
///
/// To change the expected, default character for an exponent,
/// change this value during before using lexical.
///
/// # Safety
///
/// Do not modify this value in threaded-code, as it is not thread-safe.
#[cfg(feature ="radix")]
#[no_mangle]
pub static mut EXPONENT_BACKUP_CHAR: u8 = b'^';

// GETTERS/SETTERS

// Since these types are not all C-FFI-compatible, we need to define
// a few getters and setters for the global constants.

/// Get [`NAN_STRING`] as a pointer and size.
///
/// Returns 0 on success, -1 on error. This string is **not**
/// null-terminated.
///
/// * `ptr`     - Out-parameter for a pointer to the string.
/// * `size`    - Out-parameter for the size of the string.
///
/// # Safety
///
/// Only use this in C-FFI code, otherwise, you should directly use
/// [`NAN_STRING`].
///
/// [`NAN_STRING`]: static.NAN_STRING.html
#[no_mangle]
pub unsafe extern fn get_nan_string(ptr: *mut *const u8, size: *mut usize)
    -> i32
{
    if ptr.is_null() || size.is_null() {
        -1
    } else {
        *ptr = NAN_STRING.as_ptr();
        *size = NAN_STRING.len();
        0
    }
}

/// Set [`NAN_STRING`] from a pointer and size.
///
/// Returns 0 on success, -1 on error.
///
/// * `ptr`     - Pointer to the first character in the contiguous string.
/// * `size`    - Size of the string, without the null-terminator.
///
/// # Safety
///
/// Only use this in C-FFI code, otherwise, you should directly modify
/// [`NAN_STRING`]. Do not call this function in threaded-code, as it is
/// not thread-safe. The assigned string must be valid as long as
/// lexical-core is in use (ideally static), no copies are made.
///
/// [`NAN_STRING`]: static.NAN_STRING.html
#[no_mangle]
pub unsafe extern fn set_nan_string(ptr: *const u8, size: usize)
    -> i32
{
    if ptr.is_null() {
        -1
    } else {
        NAN_STRING = slice::from_raw_parts(ptr, size);
        0
    }
}

/// Get [`INF_STRING`] as a pointer and size.
///
/// Returns 0 on success, -1 on error. This string is **not**
/// null-terminated.
///
/// * `ptr`     - Out-parameter for a pointer to the string.
/// * `size`    - Out-parameter for the size of the string.
///
/// # Safety
///
/// Only use this in C-FFI code, otherwise, you should directly use
/// [`INF_STRING`].
///
/// [`INF_STRING`]: static.INF_STRING.html
#[no_mangle]
pub unsafe extern fn get_inf_string(ptr: *mut *const u8, size: *mut usize)
    -> i32
{
    if ptr.is_null() || size.is_null() {
        -1
    } else {
        *ptr = INF_STRING.as_ptr();
        *size = INF_STRING.len();
        0
    }
}

/// Set [`INF_STRING`] from a pointer and size.
///
/// Returns 0 on success, -1 on error.
///
/// * `ptr`     - Pointer to the first character in the contiguous string.
/// * `size`    - Size of the string, without the null-terminator.
///
/// # Safety
///
/// Only use this in C-FFI code, otherwise, you should directly modify
/// [`INF_STRING`]. Do not call this function in threaded-code, as it is
/// not thread-safe. The assigned string must be valid as long as
/// lexical-core is in use (ideally static), no copies are made.
///
/// [`INF_STRING`]: static.INF_STRING.html
#[no_mangle]
pub unsafe extern fn set_inf_string(ptr: *const u8, size: usize)
    -> i32
{
    if ptr.is_null() {
        -1
    } else {
        INF_STRING = slice::from_raw_parts(ptr, size);
        0
    }
}

/// Get [`INFINITY_STRING`] as a pointer and size.
///
/// Returns 0 on success, -1 on error. This string is **not**
/// null-terminated.
///
/// * `ptr`     - Out-parameter for a pointer to the string.
/// * `size`    - Out-parameter for the size of the string.
///
/// # Safety
///
/// Only use this in C-FFI code, otherwise, you should directly use
/// [`INFINITY_STRING`].
///
/// [`INFINITY_STRING`]: static.INFINITY_STRING.html
#[no_mangle]
pub unsafe extern fn get_infinity_string(ptr: *mut *const u8, size: *mut usize)
    -> i32
{
    if ptr.is_null() || size.is_null() {
        -1
    } else {
        *ptr = INFINITY_STRING.as_ptr();
        *size = INFINITY_STRING.len();
        0
    }
}

/// Set [`INFINITY_STRING`] from a pointer and size.
///
/// Returns 0 on success, -1 on error.
///
/// * `ptr`     - Pointer to the first character in the contiguous string.
/// * `size`    - Size of the string, without the null-terminator.
///
/// # Safety
///
/// Only use this in C-FFI code, otherwise, you should directly modify
/// [`INFINITY_STRING`]. Do not call this function in threaded-code, as
/// it is not thread-safe. The assigned string must be valid as long as
/// lexical-core is in use (ideally static), no copies are made.
///
/// [`INFINITY_STRING`]: static.INFINITY_STRING.html
#[no_mangle]
pub unsafe extern fn set_infinity_string(ptr: *const u8, size: usize)
    -> i32
{
    if ptr.is_null() {
        -1
    } else {
        INFINITY_STRING = slice::from_raw_parts(ptr, size);
        0
    }
}

// CONSTANTS

// Simple, fast optimization.
// Since we're declaring a variable on the stack, and our power-of-two
// alignment dramatically improved atoi performance, do it.
cfg_if! {
if #[cfg(feature = "radix")] {
    // Use 256, actually, since we seem to have memory issues with f64.
    // Clearly not sufficient memory allocated for non-base10 values.

    /// The minimum buffer size required to serialize any `i8` value.
    pub const MAX_I8_SIZE: usize = 16;

    /// The minimum buffer size required to serialize any `i16` value.
    pub const MAX_I16_SIZE: usize = 32;

    /// The minimum buffer size required to serialize any `i32` value.
    pub const MAX_I32_SIZE: usize = 64;

    /// The minimum buffer size required to serialize any `i64` value.
    pub const MAX_I64_SIZE: usize = 128;

    /// The minimum buffer size required to serialize any `i128` value.
    pub const MAX_I128_SIZE: usize = 256;

    /// The minimum buffer size required to serialize any `u8` value.
    pub const MAX_U8_SIZE: usize = 16;

    /// The minimum buffer size required to serialize any `u16` value.
    pub const MAX_U16_SIZE: usize = 32;

    /// The minimum buffer size required to serialize any `u32` value.
    pub const MAX_U32_SIZE: usize = 64;

    /// The minimum buffer size required to serialize any `u64` value.
    pub const MAX_U64_SIZE: usize = 128;

    /// The minimum buffer size required to serialize any `u128` value.
    pub const MAX_U128_SIZE: usize = 256;

    /// The minimum buffer size required to serialize any `f32` value.
    pub const MAX_F32_SIZE: usize = 256;

    /// The minimum buffer size required to serialize any `f64` value.
    pub const MAX_F64_SIZE: usize = 256;
} else {
    // The f64 buffer is actually a size of 60, but use 64 since it's a
    // power of 2.

    /// The minimum buffer size required to serialize any `i8` value.
    pub const MAX_I8_SIZE: usize = 4;

    /// The minimum buffer size required to serialize any `i16` value.
    pub const MAX_I16_SIZE: usize = 6;

    /// The minimum buffer size required to serialize any `i32` value.
    pub const MAX_I32_SIZE: usize = 11;

    /// The minimum buffer size required to serialize any `i64` value.
    pub const MAX_I64_SIZE: usize = 20;

    /// The minimum buffer size required to serialize any `i128` value.
    pub const MAX_I128_SIZE: usize = 40;

    /// The minimum buffer size required to serialize any `u8` value.
    pub const MAX_U8_SIZE: usize = 3;

    /// The minimum buffer size required to serialize any `u16` value.
    pub const MAX_U16_SIZE: usize = 5;

    /// The minimum buffer size required to serialize any `u32` value.
    pub const MAX_U32_SIZE: usize = 10;

    /// The minimum buffer size required to serialize any `u64` value.
    pub const MAX_U64_SIZE: usize = 20;

    /// The minimum buffer size required to serialize any `u128` value.
    pub const MAX_U128_SIZE: usize = 39;

    /// The minimum buffer size required to serialize any `f32` value.
    pub const MAX_F32_SIZE: usize = 64;

    /// The minimum buffer size required to serialize any `f64` value.
    pub const MAX_F64_SIZE: usize = 64;
}} // cfg_if

cfg_if! {
if #[cfg(target_pointer_width = "16")] {
    /// The minimum buffer size required to serialize any `isize` value.
    pub const MAX_ISIZE_SIZE: usize = MAX_I16_SIZE;

    /// The minimum buffer size required to serialize any `usize` value.
    pub const MAX_USIZE_SIZE: usize = MAX_U16_SIZE;
} else if #[cfg(target_pointer_width = "32")] {
    /// The minimum buffer size required to serialize any `isize` value.
    pub const MAX_ISIZE_SIZE: usize = MAX_I32_SIZE;

    /// The minimum buffer size required to serialize any `usize` value.
    pub const MAX_USIZE_SIZE: usize = MAX_U32_SIZE;
} else if #[cfg(target_pointer_width = "64")] {
    /// The minimum buffer size required to serialize any `isize` value.
    pub const MAX_ISIZE_SIZE: usize = MAX_I64_SIZE;

    /// The minimum buffer size required to serialize any `usize` value.
    pub const MAX_USIZE_SIZE: usize = MAX_U64_SIZE;
}}  // cfg_if

/// The maximum number of bytes that any number-to-string function may write.
pub const BUFFER_SIZE: usize = MAX_F64_SIZE;

/// Symbol-generating constant for the minimum buffer required to serialize any `i8` value.
#[no_mangle]
pub static MAX_I8_SIZE_FFI: usize = MAX_I8_SIZE;

/// Symbol-generating constant for the minimum buffer required to serialize any `i16` value.
#[no_mangle]
pub static MAX_I16_SIZE_FFI: usize = MAX_I16_SIZE;

/// Symbol-generating constant for the minimum buffer required to serialize any `i32` value.
#[no_mangle]
pub static MAX_I32_SIZE_FFI: usize = MAX_I32_SIZE;

/// Symbol-generating constant for the minimum buffer required to serialize any `i64` value.
#[no_mangle]
pub static MAX_I64_SIZE_FFI: usize = MAX_I64_SIZE;

/// Symbol-generating constant for the minimum buffer required to serialize any `i128` value.
#[no_mangle]
pub static MAX_I128_SIZE_FFI: usize = MAX_I128_SIZE;

/// Symbol-generating constant for the minimum buffer required to serialize any `isize` value.
#[no_mangle]
pub static MAX_ISIZE_SIZE_FFI: usize = MAX_ISIZE_SIZE;

/// Symbol-generating constant for the minimum buffer required to serialize any `u8` value.
#[no_mangle]
pub static MAX_U8_SIZE_FFI: usize = MAX_U8_SIZE;

/// Symbol-generating constant for the minimum buffer required to serialize any `u16` value.
#[no_mangle]
pub static MAX_U16_SIZE_FFI: usize = MAX_U16_SIZE;

/// Symbol-generating constant for the minimum buffer required to serialize any `u32` value.
#[no_mangle]
pub static MAX_U32_SIZE_FFI: usize = MAX_U32_SIZE;

/// Symbol-generating constant for the minimum buffer required to serialize any `u64` value.
#[no_mangle]
pub static MAX_U64_SIZE_FFI: usize = MAX_U64_SIZE;

/// Symbol-generating constant for the minimum buffer required to serialize any `u128` value.
#[no_mangle]
pub static MAX_U128_SIZE_FFI: usize = MAX_U128_SIZE;

/// Symbol-generating constant for the minimum buffer required to serialize any `usize` value.
#[no_mangle]
pub static MAX_USIZE_SIZE_FFI: usize = MAX_USIZE_SIZE;

/// Symbol-generating constant for the minimum buffer required to serialize any `f32` value.
#[no_mangle]
pub static MAX_F32_SIZE_FFI: usize = MAX_F32_SIZE;

/// Symbol-generating constant for the minimum buffer required to serialize any `f64` value.
#[no_mangle]
pub static MAX_F64_SIZE_FFI: usize = MAX_F64_SIZE;

/// Symbol-generating constant for the maximum number of bytes that any number-to-string function may write.
#[no_mangle]
pub static BUFFER_SIZE_FFI: usize = BUFFER_SIZE;

/// The rounding scheme for float conversions.
///
/// This defines the global rounding-scheme for float parsing operations.
/// By default, this is set to `RoundingKind::NearestTieEven`. IEEE754
/// recommends this as the default for all for decimal and binary
/// operations.
///
/// # Safety
///
/// Do not modify this value in threaded-code, as it is not thread-safe.
/// See the documentation for [`RoundingKind`] for the permissible
/// values of `FLOAT_ROUNDING` in FFI-code.
///
/// [`RoundingKind`]: enum.RoundingKind.html
#[no_mangle]
pub static mut FLOAT_ROUNDING: RoundingKind = RoundingKind::NearestTieEven;

// FUNCTIONS

/// Get the exponent notation character.
#[inline]
#[allow(unused_variables)]
pub(crate) fn exponent_notation_char(radix: u32) -> u8 {
    unsafe {
        #[cfg(not(feature ="radix"))] {
            EXPONENT_DEFAULT_CHAR
        }

        #[cfg(feature ="radix")] {
            if radix >= 15 { EXPONENT_BACKUP_CHAR } else { EXPONENT_DEFAULT_CHAR }
        }
    }
}

// TEST
// ----

#[cfg(test)]
mod tests {
    use atof::*;
    use ftoa::*;
    use util::*;
    use util::test::*;
    use super::*;

    #[cfg(feature ="radix")]
    #[test]
    fn exponent_notation_char_test() {
        unsafe {
            assert_eq!(exponent_notation_char(2), EXPONENT_DEFAULT_CHAR);
            assert_eq!(exponent_notation_char(8), EXPONENT_DEFAULT_CHAR);
            assert_eq!(exponent_notation_char(10), EXPONENT_DEFAULT_CHAR);
            assert_eq!(exponent_notation_char(15), EXPONENT_BACKUP_CHAR);
            assert_eq!(exponent_notation_char(16), EXPONENT_BACKUP_CHAR);
            assert_eq!(exponent_notation_char(32), EXPONENT_BACKUP_CHAR);
        }
    }

    // Only enable when no other threads touch NAN_STRING or INFINITY_STRING.
    #[test]
    #[ignore]
    fn special_bytes_test() {
        unsafe {
            let mut buffer = new_buffer();
            // Test serializing and deserializing special strings.
            assert!(try_atof32_slice(b"NaN").value.is_nan());
            assert!(try_atof32_slice(b"nan").value.is_nan());
            assert!(try_atof32_slice(b"NAN").value.is_nan());
            assert!(try_atof32_slice(b"inf").value.is_infinite());
            assert!(try_atof32_slice(b"INF").value.is_infinite());
            assert!(try_atof32_slice(b"Infinity").value.is_infinite());
            assert_eq!(f64toa_slice(f64::NAN, &mut buffer), b"NaN");
            assert_eq!(f64toa_slice(f64::INFINITY, &mut buffer), b"inf");

            NAN_STRING = b"nan";
            INF_STRING = b"Infinity";

            assert!(try_atof32_slice(b"inf").error.code == ErrorCode::InvalidDigit);
            assert!(try_atof32_slice(b"Infinity").value.is_infinite());
            assert_eq!(f64toa_slice(f64::NAN, &mut buffer), b"nan");
            assert_eq!(f64toa_slice(f64::INFINITY, &mut buffer), b"Infinity");

            NAN_STRING = b"NaN";
            INF_STRING = b"inf";
        }
    }

    // Only enable when no other threads touch FLOAT_ROUNDING.
    #[cfg(feature = "correct")]
    #[test]
    #[ignore]
    fn special_rounding_test() {
        // Each one of these pairs is halfway, and we can detect the
        // rounding schemes from this.
        unsafe {
            // Nearest, tie-even
            FLOAT_ROUNDING = RoundingKind::NearestTieEven;
            assert_eq!(try_atof64_slice(b"-9007199254740993").value, -9007199254740992.0);
            assert_eq!(try_atof64_slice(b"-9007199254740995").value, -9007199254740996.0);
            assert_eq!(try_atof64_slice(b"9007199254740993").value, 9007199254740992.0);
            assert_eq!(try_atof64_slice(b"9007199254740995").value, 9007199254740996.0);

            // Nearest, tie-away-zero
            FLOAT_ROUNDING = RoundingKind::NearestTieAwayZero;
            assert_eq!(try_atof64_slice(b"-9007199254740993").value, -9007199254740994.0);
            assert_eq!(try_atof64_slice(b"-9007199254740995").value, -9007199254740996.0);
            assert_eq!(try_atof64_slice(b"9007199254740993").value, 9007199254740994.0);
            assert_eq!(try_atof64_slice(b"9007199254740995").value, 9007199254740996.0);

            // Toward positive infinity
            FLOAT_ROUNDING = RoundingKind::TowardPositiveInfinity;
            assert_eq!(try_atof64_slice(b"-9007199254740993").value, -9007199254740992.0);
            assert_eq!(try_atof64_slice(b"-9007199254740995").value, -9007199254740994.0);
            assert_eq!(try_atof64_slice(b"9007199254740993").value, 9007199254740994.0);
            assert_eq!(try_atof64_slice(b"9007199254740995").value, 9007199254740996.0);

            // Toward negative infinity
            FLOAT_ROUNDING = RoundingKind::TowardNegativeInfinity;
            assert_eq!(try_atof64_slice(b"-9007199254740993").value, -9007199254740994.0);
            assert_eq!(try_atof64_slice(b"-9007199254740995").value, -9007199254740996.0);
            assert_eq!(try_atof64_slice(b"9007199254740993").value, 9007199254740992.0);
            assert_eq!(try_atof64_slice(b"9007199254740995").value, 9007199254740994.0);

            // Toward zero
            FLOAT_ROUNDING = RoundingKind::TowardZero;
            assert_eq!(try_atof64_slice(b"-9007199254740993").value, -9007199254740992.0);
            assert_eq!(try_atof64_slice(b"-9007199254740995").value, -9007199254740994.0);
            assert_eq!(try_atof64_slice(b"9007199254740993").value, 9007199254740992.0);
            assert_eq!(try_atof64_slice(b"9007199254740995").value, 9007199254740994.0);

            // Reset to default
            FLOAT_ROUNDING = RoundingKind::NearestTieEven;
        }
    }

    // Only enable when no other threads touch FLOAT_ROUNDING.
    #[cfg(all(feature = "correct", feature = "radix"))]
    #[test]
    #[ignore]
    fn special_rounding_binary_test() {
        // Each one of these pairs is halfway, and we can detect the
        // rounding schemes from this.
        unsafe {
            // Nearest, tie-even
            FLOAT_ROUNDING = RoundingKind::NearestTieEven;
            assert_eq!(try_atof64_radix_slice(2, b"-100000000000000000000000000000000000000000000000000001").value, -9007199254740992.0);
            assert_eq!(try_atof64_radix_slice(2, b"-100000000000000000000000000000000000000000000000000011").value, -9007199254740996.0);
            assert_eq!(try_atof64_radix_slice(2, b"100000000000000000000000000000000000000000000000000001").value, 9007199254740992.0);
            assert_eq!(try_atof64_radix_slice(2, b"100000000000000000000000000000000000000000000000000011").value, 9007199254740996.0);

            // Nearest, tie-away-zero
            FLOAT_ROUNDING = RoundingKind::NearestTieAwayZero;
            assert_eq!(try_atof64_radix_slice(2, b"-100000000000000000000000000000000000000000000000000001").value, -9007199254740994.0);
            assert_eq!(try_atof64_radix_slice(2, b"-100000000000000000000000000000000000000000000000000011").value, -9007199254740996.0);
            assert_eq!(try_atof64_radix_slice(2, b"100000000000000000000000000000000000000000000000000001").value, 9007199254740994.0);
            assert_eq!(try_atof64_radix_slice(2, b"100000000000000000000000000000000000000000000000000011").value, 9007199254740996.0);

            // Toward positive infinity
            FLOAT_ROUNDING = RoundingKind::TowardPositiveInfinity;
            assert_eq!(try_atof64_radix_slice(2, b"-100000000000000000000000000000000000000000000000000001").value, -9007199254740992.0);
            assert_eq!(try_atof64_radix_slice(2, b"-100000000000000000000000000000000000000000000000000011").value, -9007199254740994.0);
            assert_eq!(try_atof64_radix_slice(2, b"100000000000000000000000000000000000000000000000000001").value, 9007199254740994.0);
            assert_eq!(try_atof64_radix_slice(2, b"100000000000000000000000000000000000000000000000000011").value, 9007199254740996.0);

            // Toward negative infinity
            FLOAT_ROUNDING = RoundingKind::TowardNegativeInfinity;
            assert_eq!(try_atof64_radix_slice(2, b"-100000000000000000000000000000000000000000000000000001").value, -9007199254740994.0);
            assert_eq!(try_atof64_radix_slice(2, b"-100000000000000000000000000000000000000000000000000011").value, -9007199254740996.0);
            assert_eq!(try_atof64_radix_slice(2, b"100000000000000000000000000000000000000000000000000001").value, 9007199254740992.0);
            assert_eq!(try_atof64_radix_slice(2, b"100000000000000000000000000000000000000000000000000011").value, 9007199254740994.0);

            // Toward zero
            FLOAT_ROUNDING = RoundingKind::TowardZero;
            assert_eq!(try_atof64_radix_slice(2, b"-100000000000000000000000000000000000000000000000000001").value, -9007199254740992.0);
            assert_eq!(try_atof64_radix_slice(2, b"-100000000000000000000000000000000000000000000000000011").value, -9007199254740994.0);
            assert_eq!(try_atof64_radix_slice(2, b"100000000000000000000000000000000000000000000000000001").value, 9007199254740992.0);
            assert_eq!(try_atof64_radix_slice(2, b"100000000000000000000000000000000000000000000000000011").value, 9007199254740994.0);

            // Reset to default
            FLOAT_ROUNDING = RoundingKind::NearestTieEven;
        }
    }
}