1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
/*!
An assortment of helper functions used in the library
!*/

use crate::fraction::Fraction;

/// A trait to losslessly get the decimal part of a float
/// 
/// # Examples
/// ```
/// use lemonmath::helper::GetDecimal;
/// 
/// let x = 1.12;
/// 
/// assert_eq!(x.get_decimal(), 12);
/// ```
pub trait GetDecimal {
    fn get_decimal(&self) -> u128;
}

macro_rules! impl_get_decimal {
    ($name:ident for $($t:ty)*) => ($(
        impl $name for $t {
            fn get_decimal(&self) -> u128 {
                if self.floor().to_string() != self.to_string() {
                    let decimalstring = &self.to_string()[(self.floor()).to_string().len()+1..];
                    let decimalnumber = decimalstring.parse::<u128>().unwrap();
                    return decimalnumber;
                } else {
                    return 0u128;
                }
            }
        }
    )*)
}

impl_get_decimal!(GetDecimal for f32 f64);

/// Exponents for unsigned integers
/// 
/// # Examples
/// ```
/// use lemonmath::helper::BetterExponent;
/// 
/// let x = 2u32.pow(3);
/// 
/// assert_eq!(x, 8);
/// ```
pub trait BetterExponent {
    fn power(self, number: usize) -> Self;
}

macro_rules! impl_better_exponent {
    ($name:ident for $($t:ty)*) => ($(
        impl $name for $t {
            fn power(self, number: usize) -> Self {
                let mut result = 1usize;
                for _ in 1..=number {
                    result *= self as usize;
                }
                return result as Self;
            }
        }
    )*)
}

impl_better_exponent!(BetterExponent for u8 u16 u32 u64 u128);

/// This turns a Vector of numbers into a Vector of Fractions
/// 
/// # Examples
/// ```
/// use lemonmath::helper::VecToFraction;
/// use lemonmath::fraction::Fraction;
/// 
/// let x = vec![1u8, 2u8, 3u8, 4u8, 5u8].to_fraction();
/// 
/// assert_eq!(x[0], Fraction::new(1, 1));
/// assert_eq!(x[1], Fraction::new(2, 1));
/// assert_eq!(x[2], Fraction::new(3, 1));
/// assert_eq!(x[3], Fraction::new(4, 1));
/// assert_eq!(x[4], Fraction::new(5, 1));
/// ```
pub trait VecToFraction {
    fn to_fraction(self) -> Vec<Fraction>;
}

macro_rules! impl_vec_to_fraction {
    ($name:ident for $($t:ty)*) => ($(
        impl $name for Vec<$t> {
            fn to_fraction(self) -> Vec<Fraction> {
                let mut result = vec![];
                for x in self {
                    result.push(Fraction::from_float(x as f64));
                }
                return result;
            }
        }
    )*)
}

impl_vec_to_fraction!(VecToFraction for u8 u16 u32 u64 u128 i8 i16 i32 i64 i128 usize f32 f64);

/// This is a helper trait to find gcd of two numbers
/// 
/// # Examples
/// ```
/// use lemonmath::helper::GCD;
/// 
/// let x = (2, 4);
///
/// assert_eq!(x.0.gcd(x.1), 2); 
/// ```
pub trait GCD {
    fn gcd(self, other: Self) -> Self;
}

macro_rules! impl_gcd {
    ($name:ident for $($t:ty)*) => ($(
        impl $name for $t {
            // Copyright 2014-2016 The Rust Project Developers. See the COPYRIGHT
            // file at the top-level directory of this distribution and at
            // http://rust-lang.org/COPYRIGHT.
            //
            // Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
            // http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
            // <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
            // option. This file may not be copied, modified, or distributed
            // except according to those terms.
            fn gcd(self, other: Self) -> Self {
                // Use Stein's algorithm
                let mut m = self;
                let mut n = other;
                if m == 0 || n == 0 {
                    return (m | n).abs();
                }
            
                // find common factors of 2
                let shift = (m | n).trailing_zeros();
            
                // The algorithm needs positive numbers, but the minimum value
                // can't be represented as a positive one.
                // It's also a power of two, so the gcd can be
                // calculated by bitshifting in that case
            
                // Assuming two's complement, the number created by the shift
                // is positive for all numbers except gcd = abs(min value)
                // The call to .abs() causes a panic in debug mode
                if m == Self::min_value() || n == Self::min_value() {
                    return ((1 << shift) as $t).abs();
                }
            
                // guaranteed to be positive now, rest like unsigned algorithm
                m = m.abs();
                n = n.abs();
            
                // divide n and m by 2 until odd
                m >>= m.trailing_zeros();
                n >>= n.trailing_zeros();
            
                while m != n {
                    if m > n {
                        m -= n;
                        m >>= m.trailing_zeros();
                    } else {
                        n -= m;
                        n >>= n.trailing_zeros();
                    }
                }
                m << shift
            }
        }
    )*)
}

impl_gcd!(GCD for i8 i16 i32 i64 i128 isize);