1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
//! # Fork-join multitasking for Legion ECS
//!
//! Instead of hand-rolling state machines to sequence the effects of various ECS systems, spawn
//! tasks as entities and declare explicit temporal dependencies between them.
//!
//! ## Code Example: making task graphs and dispatching task runners
//!
//! ```
//! use legion::prelude::*;
//! use legion_task::*;
//!
//! #[derive(Clone)]
//! struct SaySomething(&'static str);
//!
//! impl<'a> TaskComponent<'a> for SaySomething {
//!     type Data = ();
//!
//!     fn run(&mut self, data: &mut Self::Data) -> bool {
//!         println!("{}", self.0);
//!
//!         true
//!     }
//! }
//!
//! #[derive(Clone, Debug)]
//! struct PushValue {
//!     value: usize,
//! }
//!
//! impl<'a> TaskComponent<'a> for PushValue {
//!     type Data = Vec<usize>;
//!
//!     fn run(&mut self, data: &mut Self::Data) -> bool {
//!         data.push(self.value);
//!
//!         true
//!     }
//! }
//!
//! fn make_static_task_graph(cmd: &mut CommandBuffer) {
//!     // Any component that implements TaskComponent can be spawned.
//!     let task_graph: TaskGraph = seq!(
//!         @SaySomething("hello"),
//!         fork!(
//!             @PushValue { value: 1 },
//!             @PushValue { value: 2 },
//!             @PushValue { value: 3 }
//!         ),
//!         @SaySomething("goodbye")
//!     );
//!     task_graph.assemble(OnCompletion::Delete, cmd);
//! }
//!
//! fn make_dynamic_task_graph(cmd: &mut CommandBuffer) {
//!     let first: TaskGraph = task!(@SaySomething("hello"));
//!     let mut middle: TaskGraph = empty_graph!();
//!     for i in 0..10 {
//!         middle = fork!(middle, @PushValue { value: i });
//!     }
//!     let last: TaskGraph = task!(@SaySomething("goodbye"));
//!     let task_graph: TaskGraph = seq!(first, middle, last);
//!     task_graph.assemble(OnCompletion::Delete, cmd);
//! }
//!
//! fn build_say_something_task_runner_system() -> Box<dyn Schedulable> {
//!     SystemBuilder::new("say_something_task_runner")
//!         .with_query(task_runner_query::<SaySomething>())
//!         .build(|_, mut world, _, task_query| {
//!             run_tasks(&mut world, &mut (), task_query)
//!         })
//! }
//!
//! fn build_push_value_task_runner_system() -> Box<dyn Schedulable> {
//!     SystemBuilder::new("push_value_task_runner")
//!         .write_resource::<Vec<usize>>()
//!         .with_query(task_runner_query::<PushValue>())
//!         .build(|_, mut world, value, task_query| {
//!             run_tasks(&mut world, &mut **value, task_query)
//!         })
//! }
//!
//! fn make_schedule() -> Schedule {
//!     Schedule::builder()
//!         .add_system(build_say_something_task_runner_system())
//!         .add_system(build_push_value_task_runner_system())
//!         .add_system(build_task_manager_system("task_manager"))
//!         .build()
//! }
//! ```
//!
//! ## Data Model
//!
//! Here we expound on the technical details of this module's implementation. For basic usage, see
//! the tests.
//!
//! In this model, every task is some entity. The entity is allowed to have exactly one component
//! that implements `TaskComponent` (it may have other components that don't implement
//! `TaskComponent`). The task will be run to completion by running a system that calls `run_tasks`
//! with the proper `TaskComponent::Data` and `task_query`.
//!
//! Every task entity is also a node in a (hopefully acyclic) directed graph. An edge `t2 --> t1`
//! means that `t2` cannot start until `t1` has completed.
//!
//! In order for tasks to become unblocked, the system created with `build_task_manager_system` must
//! run, whence it will traverse the graph, starting at the "final entities", and check for entities
//! that have completed, potentially unblocking their parents. In order for a task to be run, it
//! must be the descendent of a final entity. Entity component tuples become final by calling
//! `finalize` (which adds a `FinalTag` component).
//!
//! Edges can either come from `SingleEdge` or `MultiEdge` components, but you should not use these
//! types directly. You might wonder why we need both types of edges. It's a fair question, because
//! adding the `SingleEdge` concept does not actually make the model capable of representing any
//! semantically new graphs. The reason is efficiency.
//!
//! If you want to implement a fork join like this (note: time is going left to right but the
//! directed edges are going right to left):
//!
//!```
//! r#"       ----- t1.1 <---   ----- t2.1 <---
//!          /               \ /               \
//!      t0 <------ t1.2 <----<------ t2.2 <---- t3
//!          \               / \               /
//!           ----- t1.3 <---   ----- t2.3 <---      "#;
//!```
//!
//! You would actually do this by calling `make_fork` to create two "fork" entities `F1` and `F2`
//! that don't have `TaskComponent`s, but they can have both a `SingleEdge` and a `MultiEdge`. Note
//! that the children on the `MultiEdge` are called "prongs" of the fork.
//!
//!```
//! r#"      single          single          single
//!     t0 <-------- F1 <-------------- F2 <-------- t3
//!                   |                  |
//!          t1.1 <---|          t2.1 <--|
//!          t1.2 <---| multi    t2.2 <--| multi
//!          t1.3 <---|          t2.3 <--|            "#;
//!```
//!
//! The semantics would be such that this graph is equivalent to the one above. Before any of the
//! tasks connected to `F2` by the `MultiEdge` could run, the tasks connected by the `SingleEdge`
//! (`{ t0, t1.1, t1.2, t1.3 }`) would have to be complete. `t3` could only run once all of the
//! descendents of `F2` had completed.
//!
//! The advantages of this scheme are:
//!   - a traversal of the graph starting from `t3` does not visit the same node twice
//!   - it is a bit easier to create fork-join graphs with larger numbers of concurrent tasks
//!   - there are fewer edges for the most common use cases
//!
//! Here's another example with "nested forks" to test your understanding:
//!
//! ```
//! r#"   With fork entities:
//!
//!           t0 <-------------- FA <----- t2
//!                              |
//!                       tx <---|
//!               t1 <--- FB <---|
//!                        |
//!               ty <-----|
//!               tz <-----|
//!
//!       As time orderings:
//!
//!           t0   < { t1, tx, ty, tz } < t2
//!           t1   < { ty, tz }
//!
//!       Induced graph:
//!
//!           t0 <------- tx <------- t2
//!            ^                      |
//!            |      /------ ty <----|
//!            |     v                |
//!            ----- t1 <---- tz <-----          "#;
//! ```
//!
//! ## Macro Usage
//!
//! Every user of this module should create task graphs via the `empty_graph!`, `seq!`, `fork!`, and
//! `task!` macros, which make it easy to construct task graphs correctly. Once a graph is ready,
//! call `assemble` on it to mark the task entities for execution (by finalizing the root of the
//! graph).
//!
//! These systems must be scheduled for tasks to make progress:
//!   - a system created with `build_task_manager_system`
//!   - a system that calls `run_tasks` on each `TaskComponent` used
//!
//! ## Advanced Usage
//!
//! If you find the `TaskGraph` macros limiting, you can use the `make_task`, `join`, `make_fork`,
//! and `add_prong` functions; these are the building blocks for creating all task graphs, including
//! buggy ones. These functions are totally dynamic in that they deal directly with entities of
//! various archetypes, assuming that the programmer passed in the correct archetypes for the given
//! function.
//!
//! Potential bugs that won't be detected for you:
//!   - leaked orphan entities
//!   - graph cycles
//!   - finalizing an entity that has children
//!   - users manually tampering with the `TaskProgress`, `SingleEdge`, `MultiEdge`, or `FinalTag`
//!     components; these should only be used inside this module
//!

mod components;
mod graph_builder;
mod manager;
mod runner;

pub use components::{
    add_prong, finalize, join, make_fork, make_task, with_task_components, FinalTag, OnCompletion,
    TaskComponent, TaskProgress,
};
pub use graph_builder::{Cons, TaskFactory, TaskGraph};
pub use manager::{build_task_manager_system, entity_is_complete};
pub use runner::{run_tasks, task_runner_query, TaskEntityFilter, TaskQuery, TaskSystemQuery};

#[cfg(test)]
mod tests {
    use super::*;

    use legion::prelude::*;

    #[derive(Clone, Debug, Default, Eq, PartialEq)]
    struct Noop {
        was_run: bool,
    }

    impl<'a> TaskComponent<'a> for Noop {
        type Data = ();

        fn run(&mut self, _data: &mut Self::Data) -> bool {
            self.was_run = true;

            true
        }
    }

    fn build_noop_task_runner_system() -> Box<dyn Schedulable> {
        SystemBuilder::new("noop_task_runner")
            .with_query(task_runner_query::<Noop>())
            .build(|_, mut world, _, task_query| run_tasks(&mut world, &mut (), task_query))
    }

    #[derive(Clone, Debug)]
    struct PushValue {
        value: usize,
    }

    impl<'a> TaskComponent<'a> for PushValue {
        type Data = Vec<usize>;

        fn run(&mut self, data: &mut Self::Data) -> bool {
            log::debug!("Task pushing value {}", self.value);
            data.push(self.value);

            true
        }
    }

    fn build_push_value_task_runner_system() -> Box<dyn Schedulable> {
        SystemBuilder::new("example_task_runner")
            .write_resource::<Vec<usize>>()
            .with_query(task_runner_query::<PushValue>())
            .build(|_, mut world, value, task_query| {
                run_tasks(&mut world, &mut **value, task_query)
            })
    }

    fn set_up<'a, 'b>() -> (World, Resources, Schedule) {
        let mut resources = Resources::default();
        resources.insert::<Vec<usize>>(Vec::new());

        let world = World::new();

        let schedule = Schedule::builder()
            .add_system(build_noop_task_runner_system())
            .add_system(build_push_value_task_runner_system())
            // For sake of reproducible tests, assume the manager system is the last to run.
            .add_system(build_task_manager_system("task_manager"))
            .build();

        (world, resources, schedule)
    }

    fn assemble_task_graph(
        make_task_graph: fn() -> TaskGraph,
        on_completion: OnCompletion,
        world: &mut World,
        resources: &mut Resources,
    ) -> Entity {
        resources.insert::<Option<Entity>>(None);
        let assemble_system = SystemBuilder::new("assembler")
            .write_resource::<Option<Entity>>()
            .build(move |mut cmd, _subworld, final_task, _| {
                **final_task = Some(make_task_graph().assemble(on_completion, &mut cmd));
            });
        let mut assemble_schedule = Schedule::builder()
            .add_system(assemble_system)
            .flush()
            .build();
        assemble_schedule.execute(world, resources);

        resources.get::<Option<Entity>>().unwrap().unwrap()
    }

    fn assert_task_is_complete(
        task: Entity,
        is_alive: bool,
        world: &mut World,
        resources: &mut Resources,
    ) {
        let assert_system =
            with_task_components(SystemBuilder::new("asserter")).build(move |_, subworld, _, _| {
                if is_alive {
                    assert!(entity_is_complete(&subworld, task));
                }
                assert_eq!(subworld.is_alive(task), is_alive);
            });
        let mut assert_schedule = Schedule::builder().add_system(assert_system).build();
        assert_schedule.execute(world, resources);
    }

    #[test]
    fn run_single_task() {
        let (mut world, mut resources, mut schedule) = set_up();

        fn make_task_graph() -> TaskGraph {
            task!(@Noop::default())
        }
        let root = assemble_task_graph(
            make_task_graph,
            OnCompletion::None,
            &mut world,
            &mut resources,
        );

        schedule.execute(&mut world, &mut resources);
        schedule.execute(&mut world, &mut resources);

        assert_eq!(
            *world.get_component::<Noop>(root).unwrap(),
            Noop { was_run: true }
        );
        assert_task_is_complete(root, true, &mut world, &mut resources);
    }

    #[test]
    fn single_task_deleted_on_completion() {
        let (mut world, mut resources, mut schedule) = set_up();

        fn make_task_graph() -> TaskGraph {
            task!(@Noop::default())
        }
        let root = assemble_task_graph(
            make_task_graph,
            OnCompletion::Delete,
            &mut world,
            &mut resources,
        );

        schedule.execute(&mut world, &mut resources);
        schedule.execute(&mut world, &mut resources);

        assert_task_is_complete(root, false, &mut world, &mut resources);
    }

    #[test]
    fn joined_tasks_run_in_order_and_deleted_on_completion() {
        let (mut world, mut resources, mut schedule) = set_up();

        fn make_task_graph() -> TaskGraph {
            seq!(
                @PushValue { value: 1 },
                @PushValue { value: 2 },
                @PushValue { value: 3 }
            )
        }
        let root = assemble_task_graph(
            make_task_graph,
            OnCompletion::Delete,
            &mut world,
            &mut resources,
        );

        schedule.execute(&mut world, &mut resources);
        schedule.execute(&mut world, &mut resources);
        schedule.execute(&mut world, &mut resources);
        schedule.execute(&mut world, &mut resources);

        assert_eq!(*resources.get::<Vec<usize>>().unwrap(), vec![1, 2, 3]);
        assert_task_is_complete(root, false, &mut world, &mut resources);
    }

    #[test]
    fn all_prongs_of_fork_run_before_join_and_deleted_on_completion() {
        let (mut world, mut resources, mut schedule) = set_up();

        //         ---> t1.1 ---
        //       /               \
        //     t2 ----> t1.2 -----> t0

        fn make_task_graph() -> TaskGraph {
            seq!(
                @PushValue { value: 1 },
                fork!(@PushValue { value: 2 }, @PushValue { value: 3 }),
                @PushValue { value: 4 }
            )
        }
        let root = assemble_task_graph(
            make_task_graph,
            OnCompletion::Delete,
            &mut world,
            &mut resources,
        );

        schedule.execute(&mut world, &mut resources);
        schedule.execute(&mut world, &mut resources);
        schedule.execute(&mut world, &mut resources);
        schedule.execute(&mut world, &mut resources);

        let pushed_values: Vec<usize> = (*resources.get::<Vec<usize>>().unwrap()).clone();
        assert!(pushed_values == vec![1, 2, 3, 4] || pushed_values == vec![1, 3, 2, 4]);

        assert_task_is_complete(root, false, &mut world, &mut resources);
    }

    #[test]
    fn join_fork_with_nested_fork() {
        let (mut world, mut resources, mut schedule) = set_up();

        fn make_task_graph() -> TaskGraph {
            seq!(
                @PushValue { value: 1 },
                fork!(
                    @PushValue { value: 2 },
                    fork!(@PushValue { value: 3 }, @PushValue { value: 4 })
                ),
                @PushValue { value: 5 }
            )
        }
        let root = assemble_task_graph(
            make_task_graph,
            OnCompletion::Delete,
            &mut world,
            &mut resources,
        );

        schedule.execute(&mut world, &mut resources);
        schedule.execute(&mut world, &mut resources);
        schedule.execute(&mut world, &mut resources);
        schedule.execute(&mut world, &mut resources);

        let pushed_values: Vec<usize> = (*resources.get::<Vec<usize>>().unwrap()).clone();
        assert!(
            pushed_values == vec![1, 2, 3, 4, 5]
                || pushed_values == vec![1, 2, 4, 3, 5]
                || pushed_values == vec![1, 3, 2, 4, 5]
                || pushed_values == vec![1, 3, 4, 2, 5]
                || pushed_values == vec![1, 4, 2, 3, 5]
                || pushed_values == vec![1, 4, 3, 2, 5]
        );

        assert_task_is_complete(root, false, &mut world, &mut resources);
    }
}