1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
//! Binary Tree Inorder Traversal[leetcode: binary_tree_inorder_traversal](https://leetcode.com/problems/binary-tree-inorder-traversal/)
//!
//! Given a binary tree, return the inorder traversal of its nodes' values.
//!
//! **Example:**
//!
//! ```
//! Input: [1,null,2,3]
//!    1
//!     \
//!      2
//!     /
//!    3
//!
//! Output: [1,3,2]
//! ```
//! **Follow up:** Recursive solution is trivial, could you do it iteratively?

/// # Solutions
///
/// # Approach 1: Recursive Approach
///
/// * Time complexity: O(n)
///
/// * Space complexity: O(logn)
///
/// * Runtime: 0 ms
///
/// * Memory: 2.4 MB
///
/// ```rust
/// // Definition for a binary tree node.
/// // #[derive(Debug, PartialEq, Eq)]
/// // pub struct TreeNode {
/// //   pub val: i32,
/// //   pub left: Option<Rc<RefCell<TreeNode>>>,
/// //   pub right: Option<Rc<RefCell<TreeNode>>>,
/// // }
/// //
/// // impl TreeNode {
/// //   #[inline]
/// //   pub fn new(val: i32) -> Self {
/// //     TreeNode {
/// //       val,
/// //       left: None,
/// //       right: None
/// //     }
/// //   }
/// // }
/// use std::rc::Rc;
/// use std::cell::RefCell;
/// impl Solution {
///     pub fn inorder_traversal(root: Option<Rc<RefCell<TreeNode>>>) -> Vec<i32> {
///         let mut result: Vec<i32> = vec![];
///         if root.is_none() { return result; }
///
///         Self::_in_order(root, &mut result);
///         result
///     }
///     fn _in_order(root: Option<Rc<RefCell<TreeNode>>>, result: &mut Vec<i32>) {
///         match root {
///             Some(node) => {
///                 Self::_in_order(node.borrow().left.clone(), result);
///                 result.push(node.borrow().val);
///                 Self::_in_order(node.borrow().right.clone(), result);
///             },
///             None => { return; }
///         }
///     }
/// }
/// ```
///
/// # Approach 2: Iterating method using Stack
///
/// * Time complexity: O(n)
///
/// * Space complexity: O(n)
///
/// * Runtime: 0 ms
///
/// * Memory: 2.4 MB
///
/// ```rust
/// // Definition for a binary tree node.
/// // #[derive(Debug, PartialEq, Eq)]
/// // pub struct TreeNode {
/// //   pub val: i32,
/// //   pub left: Option<Rc<RefCell<TreeNode>>>,
/// //   pub right: Option<Rc<RefCell<TreeNode>>>,
/// // }
/// //
/// // impl TreeNode {
/// //   #[inline]
/// //   pub fn new(val: i32) -> Self {
/// //     TreeNode {
/// //       val,
/// //       left: None,
/// //       right: None
/// //     }
/// //   }
/// // }
/// use std::rc::Rc;
/// use std::cell::RefCell;
/// impl Solution {
///     pub fn inorder_traversal(root: Option<Rc<RefCell<TreeNode>>>) -> Vec<i32> {
///         let mut result = vec![];
///         if root.is_none() { return result; }
///
///         let mut stack = Vec::new();
///         let mut r = root.clone();
///
///         while r.is_some() || !stack.is_empty() {
///             while let Some(node) = r {
///                stack.push(node.clone());
///                r = node.borrow().left.clone();
///             }
///             r = stack.pop();
///             if let Some(node) = r {
///                 result.push(node.borrow().val);
///                 r = node.borrow().right.clone();
///             }
///         }
///         result
///     }
/// }
/// ```
///
pub fn inorder_traversal(root: Option<Rc<RefCell<TreeNode>>>) -> Vec<i32> {
    let mut result = vec![];
    if root.is_none() { return result; }

    let mut stack = Vec::new();
    let mut r = root.clone();

    while r.is_some() || !stack.is_empty() {
        while let Some(node) = r {
            stack.push(node.clone());
            r = node.borrow().left.clone();
        }
        r = stack.pop();
        if let Some(node) = r {
            result.push(node.borrow().val);
            r = node.borrow().right.clone();
        }
    }
    result
}
use std::rc::Rc;
use std::cell::RefCell;
// Definition for a binary tree node.
#[derive(Debug, PartialEq, Eq)]
pub struct TreeNode {
    pub val: i32,
    pub left: Option<Rc<RefCell<TreeNode>>>,
    pub right: Option<Rc<RefCell<TreeNode>>>,
}

impl TreeNode {
    #[inline]
    pub fn new(val: i32) -> Self {
        TreeNode {
            val,
            left: None,
            right: None
        }
    }
}