1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
//! Maximum Depth of Binary Tree[leetcode: maximum_depth_of_binary_tree](https://leetcode.com/problems/maximum-depth-of-binary-tree/)
//!
//! Given a binary tree, find its maximum depth.
//!
//! The maximum depth is the number of nodes along the longest path from the root node down to the farthest leaf node.
//!
//! **Note:** A leaf is a node with no children.
//!
//! **example:**
//! Given binary tree `[3,9,20,null,null,15,7]`,
//!
//! ```
//!     3
//!    / \
//!   9  20
//!     /  \
//!    15   7
//! ```
//! return its depth = 3.

use std::rc::Rc;
use std::cell::RefCell;
use std::cmp::Ord;
/// # Solutions
///
/// # Approach 1: DFS
///
/// * Time complexity: O(n)
///
/// * Space complexity: O(1)
///
/// * Runtime: 4 ms
///
/// * Memory: 3.1 MB
///
/// ```rust
/// // Definition for a binary tree node.
/// // #[derive(Debug, PartialEq, Eq)]
/// // pub struct TreeNode {
/// //   pub val: i32,
/// //   pub left: Option<Rc<RefCell<TreeNode>>>,
/// //   pub right: Option<Rc<RefCell<TreeNode>>>,
/// // }
/// //
/// // impl TreeNode {
/// //   #[inline]
/// //   pub fn new(val: i32) -> Self {
/// //     TreeNode {
/// //       val,
/// //       left: None,
/// //       right: None
/// //     }
/// //   }
/// // }
/// use std::rc::Rc;
/// use std::cell::RefCell;
/// use std::cmp::Ord;
/// impl Solution {
///     pub fn max_depth(root: Option<Rc<RefCell<TreeNode>>>) -> i32 {
///         match root {
///             Some(node) => {
///                 let left = Self::max_depth(node.borrow().left.clone());
///                 let right = Self::max_depth(node.borrow().right.clone());
///
///                 1 + left.max(right)
///             },
///             _ => 0,
///         }
///     }
/// }
/// ```
///
/// # Approach 2: BFS
///
/// * Time complexity: O(n)
///
/// * Space complexity: O(1)
///
/// * Runtime: 0 ms
///
/// * Memory: 3.2 MB
///
/// ```rust
/// // Definition for a binary tree node.
/// // #[derive(Debug, PartialEq, Eq)]
/// // pub struct TreeNode {
/// //   pub val: i32,
/// //   pub left: Option<Rc<RefCell<TreeNode>>>,
/// //   pub right: Option<Rc<RefCell<TreeNode>>>,
/// // }
/// //
/// // impl TreeNode {
/// //   #[inline]
/// //   pub fn new(val: i32) -> Self {
/// //     TreeNode {
/// //       val,
/// //       left: None,
/// //       right: None
/// //     }
/// //   }
/// // }
/// use std::rc::Rc;
/// use std::cell::RefCell;
/// use std::collections::VecDeque;
/// impl Solution {
///     pub fn max_depth(root: Option<Rc<RefCell<TreeNode>>>) -> i32 {
///         if root.is_none() { return 0; }
///
///         let mut depth = 0;
///         let mut deque: VecDeque<Option<Rc<RefCell<TreeNode>>>> = VecDeque::new();
///         deque.push_back(root);
///
///         while !deque.is_empty() {
///             let level_size = deque.len();
///             let mut added = false;
///             depth += 1;
///             for _i in 0..level_size {
///                 let n = deque.pop_front();
///                 added = true;
///                 if let Some(Some(node)) = n {
///                     if node.borrow().left.is_some() { deque.push_back(node.borrow().left.clone());}
///                     if node.borrow().right.is_some() { deque.push_back(node.borrow().right.clone());}
///                 }
///             }
///             if !added { break; }
///         }
///         depth
///     }
/// }
/// ```
///
pub fn max_depth(root: Option<Rc<RefCell<TreeNode>>>) -> i32 {
    match root {
        Some(node) => {
            let left = max_depth(node.borrow().left.clone());
            let right = max_depth(node.borrow().right.clone());

            1 + left.max(right)
        },
        _ => 0,
    }
}
// Definition for a binary tree node.
#[derive(Debug, PartialEq, Eq)]
pub struct TreeNode {
  pub val: i32,
  pub left: Option<Rc<RefCell<TreeNode>>>,
  pub right: Option<Rc<RefCell<TreeNode>>>,
}

impl TreeNode {
  #[inline]
  pub fn new(val: i32) -> Self {
    TreeNode {
      val,
      left: None,
      right: None
    }
  }
}