1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383
#![cfg_attr(not(test), no_std)]
//! A simple, concurrent, lock-free, singly-linked list. Only supports prepending items, and will
//! leak an allocation for each new element!
//!
//! This type of list can be useful for setting up a chain of objects that only need to be
//! initialized once and will live for the duration of the program.
extern crate alloc;
use alloc::boxed::Box;
use core::fmt::{self, Debug};
use core::iter::FusedIterator;
use core::marker::PhantomData;
use core::ptr::NonNull;
use core::sync::atomic::{AtomicPtr, Ordering};
/// A node of a [`LeakList`].
pub struct Node<T> {
val: T,
/// Note: this can't be `Option<&'a Node<T>>` because the pointee isn't valid until after
/// the successful compare-exchange operation (which uses an `AcqRel` fence to synchronize with
/// other calls to `push_front`).
next: Option<NonNull<Node<T>>>,
}
// SAFETY: the `next` pointer blocks the `Sync` impl, since it's of type `*mut T`, but it really
// behaves more like `&'a T` which implements `Sync` iff `T: Sync`.
// Note: we could also probably implement `Send` for `Node<T>` where `T: Send + Sync`, but I don't
// think this would be helpful since users are never given access to a `Node<T>` directly.
unsafe impl<T: Sync> Sync for Node<T> {}
impl<T> Node<T> {
/// Returns a reference to the next node, or `None` if it this is the last node.
///
/// # Examples
///
/// ```
/// use leaklist::LeakList;
///
/// let list: LeakList<u32> = LeakList::new();
/// let node = list.push_front(123);
/// assert!(node.next().is_none());
/// ```
pub fn next(&self) -> Option<&Node<T>> {
// SAFETY: public functions only return a node once `next` is valid.
unsafe { self.next.map(|p| p.as_ref()) }
}
/// Gets a reference to the value contained in this node.
///
/// # Examples
///
/// ```
/// use leaklist::LeakList;
///
/// let list: LeakList<u32> = LeakList::new();
/// let node = list.push_front(123);
/// assert_eq!(*node.get(), 123);
/// ```
pub fn get(&self) -> &T {
&self.val
}
}
impl<T: Debug> Debug for Node<T> {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
f.debug_struct("Node")
.field("val", self.get())
.field("next", &self.next())
.finish()
}
}
/// A simple, concurrent, lock-free, singly-linked list.
pub struct LeakList<T> {
head: AtomicPtr<Node<T>>,
phantom: PhantomData<Box<Node<T>>>,
}
unsafe impl<T: Send> Send for LeakList<T> {}
unsafe impl<T: Sync> Sync for LeakList<T> {}
impl<T: Debug> Debug for LeakList<T> {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
f.debug_struct("LeakList")
.field("head", &self.head())
.finish()
}
}
impl<T> Default for LeakList<T> {
fn default() -> Self {
Self::new()
}
}
impl<T> LeakList<T> {
/// Creates a new, empty `LeakList<T>`.
///
/// # Examples
///
/// ```
/// use leaklist::LeakList;
///
/// let list: LeakList<u32> = LeakList::new();
/// ```
pub const fn new() -> Self {
Self {
head: AtomicPtr::new(core::ptr::null_mut()),
phantom: PhantomData,
}
}
/// Pushes a new node to the head of the list. Returns a reference to the node.
///
/// # Examples
///
/// ```
/// use leaklist::LeakList;
///
/// let list: LeakList<u32> = LeakList::new();
/// let node = list.push_front(123);
/// assert_eq!(*node.get(), 123);
/// ```
pub fn push_front(&self, val: T) -> &Node<T> {
let node_ptr = Box::into_raw(Box::new(Node { next: None, val }));
loop {
let cur_head = self.head.load(Ordering::Relaxed);
// SAFETY: we still have unique ownership of the node for now, so this write is safe and
// race-free.
unsafe { (*node_ptr).next = NonNull::new(cur_head) };
if self
.head
.compare_exchange_weak(cur_head, node_ptr, Ordering::AcqRel, Ordering::Relaxed)
.is_ok()
{
// SAFETY: the compare-exchange succeeded, so the pointee and all following nodes
// are valid and visible to this thread.
return unsafe { &*node_ptr };
}
}
}
/// Returns the frontmost node of the list (ie. the most-recently added node).
///
/// # Examples
///
/// ```
/// use leaklist::LeakList;
///
/// let list: LeakList<u32> = LeakList::new();
/// assert!(list.head().is_none());
/// list.push_front(123);
/// assert_eq!(list.head().map(|h| *h.get()), Some(123));
/// ```
pub fn head(&self) -> Option<&Node<T>> {
// SAFETY: the acquire fence ensures that the pointee and all following nodes are valid and
// visible to this thread.
unsafe { self.head.load(Ordering::Acquire).as_ref() }
}
/// Returns the frontmost value of the list (ie. the most-recently added value).
///
/// # Examples
///
/// ```
/// use leaklist::LeakList;
///
/// let list: LeakList<u32> = LeakList::new();
/// assert_eq!(list.front(), None);
/// list.push_front(123);
/// assert_eq!(list.front().copied(), Some(123));
/// ```
pub fn front(&self) -> Option<&T> {
self.head().map(|node| node.get())
}
/// Returns whether the list is currently empty.
///
/// # Examples
///
/// ```
/// use leaklist::LeakList;
///
/// let list: LeakList<u32> = LeakList::new();
/// assert!(list.is_empty());
/// list.push_front(123);
/// assert!(!list.is_empty());
/// ```
pub fn is_empty(&self) -> bool {
self.head().is_none()
}
/// Returns an iterator over the list from front to back, starting with the current head.
///
/// # Examples
///
/// ```
/// use leaklist::LeakList;
///
/// let list: LeakList<u32> = LeakList::new();
/// list.push_front(456);
/// list.push_front(123);
/// let vec: Vec<u32> = list.iter().copied().collect();
/// assert_eq!(vec, [123, 456]);
/// ```
pub fn iter(&self) -> Iter<T> {
Iter { node: self.head() }
}
/// Removes and returns the frontmost element of the list.
///
/// # Examples
///
/// ```
/// use leaklist::LeakList;
///
/// let mut list: LeakList<u32> = LeakList::new();
/// assert_eq!(list.pop_front(), None);
/// list.push_front(456);
/// list.push_front(123);
/// assert_eq!(list.pop_front(), Some(123));
/// ```
pub fn pop_front(&mut self) -> Option<T> {
let head = *self.head.get_mut();
if head.is_null() {
return None;
}
// SAFETY: the head pointer is valid if it is non-null, and we replace it with `head.next`
// so the inner value cannot be used again.
let head_box = unsafe { Box::from_raw(head) };
*self.head.get_mut() = head_box.next.map_or(core::ptr::null_mut(), |p| p.as_ptr());
Some(head_box.val)
}
// Note: future methods could include `extend()` and cursor-like methods that let you more
// directly handle `Node<T>` instances. Other features like `len()` could be added as well, but
// this would make list operations more heavyweight.
}
impl<T> Drop for LeakList<T> {
fn drop(&mut self) {
let mut into_iter = IntoIter {
node: NonNull::new(*self.head.get_mut()),
phantom: PhantomData,
};
while into_iter.next().is_some() {}
}
}
/// An iterator over the items of a [`LeakList`].
#[derive(Clone, Debug)]
pub struct Iter<'a, T> {
node: Option<&'a Node<T>>,
}
impl<'a, T> Iterator for Iter<'a, T> {
type Item = &'a T;
fn next(&mut self) -> Option<Self::Item> {
let node = self.node?;
self.node = node.next();
Some(node.get())
}
fn size_hint(&self) -> (usize, Option<usize>) {
if self.node.is_some() {
(1, None)
} else {
(0, Some(0))
}
}
}
impl<T> FusedIterator for Iter<'_, T> {}
impl<'a, T> IntoIterator for &'a LeakList<T> {
type Item = &'a T;
type IntoIter = Iter<'a, T>;
fn into_iter(self) -> Self::IntoIter {
self.iter()
}
}
/// An iterator that moves out of the items of a [`LeakList`].
#[derive(Debug)]
pub struct IntoIter<T> {
node: Option<NonNull<Node<T>>>,
phantom: PhantomData<Box<Node<T>>>,
}
impl<T> Iterator for IntoIter<T> {
type Item = T;
fn next(&mut self) -> Option<Self::Item> {
// SAFETY: we have unique access to the node
let Node { val, next } = unsafe { *Box::from_raw(self.node?.as_ptr()) };
self.node = next;
Some(val)
}
fn size_hint(&self) -> (usize, Option<usize>) {
if self.node.is_some() {
(1, None)
} else {
(0, Some(0))
}
}
}
impl<T> FusedIterator for IntoIter<T> {}
impl<T> IntoIterator for LeakList<T> {
type Item = T;
type IntoIter = IntoIter<T>;
fn into_iter(mut self) -> Self::IntoIter {
IntoIter {
node: NonNull::new(core::mem::replace(
self.head.get_mut(),
core::ptr::null_mut(),
)),
phantom: PhantomData,
}
}
}
#[cfg(test)]
mod tests {
use super::*;
#[test]
fn test_threaded() {
for _ in 0..100 {
let mut list: LeakList<u32> = LeakList::new();
let node1 = list.push_front(1);
let node2 = list.push_front(2);
println!("node1: {:?}", node1);
println!("node2: {:?}", node2);
std::thread::scope(|s| {
s.spawn(|| {
let node3 = list.push_front(3);
println!("node3: {:?}", node3);
});
s.spawn(|| {
let node4 = list.push_front(4);
println!("node4: {:?}", node4);
});
});
let removed = list.pop_front();
println!("removed: {:?}", removed);
assert!(removed == Some(3) || removed == Some(4));
let vals: Vec<u32> = list.iter().copied().collect();
if vals != [3, 2, 1] && vals != [4, 2, 1] {
panic!(
"incorrect result: got {:?}, expected either [3, 2, 1] or [4, 2, 1]",
vals,
);
}
}
}
#[test]
fn test_threaded_many() {
let list: LeakList<u32> = LeakList::new();
std::thread::scope(|s| {
let list_ref = &list;
for i in 1..=1000 {
s.spawn(move || list_ref.push_front(i));
}
});
println!("list: {:?}", list.iter().copied().collect::<Vec<u32>>());
}
}