1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742
//! Simulating and execution for LC-3 assembly.
//!
//! This module is focused on executing fully assembled code (i.e., [`ObjectFile`]).
//!
//! This module consists of:
//! - [`Simulator`]: The struct that simulates assembled code.
//! - [`mem`]: The module handling memory relating to the registers.
//! - [`io`]: The module handling simulator IO.
//! - [`debug`]: The module handling types of breakpoints for the simulator.
pub mod mem;
pub mod io;
pub mod debug;
use std::sync::atomic::AtomicBool;
use std::sync::Arc;
use crate::asm::ObjectFile;
use crate::ast::reg_consts::{R6, R7};
use crate::ast::sim::SimInstr;
use crate::ast::ImmOrReg;
use io::*;
use self::debug::Breakpoint;
use self::mem::{AssertInit as _, Mem, MemAccessCtx, RegFile, Word, WordCreateStrategy};
/// Errors that can occur during simulation.
#[derive(Debug)]
pub enum SimErr {
/// Word was decoded, but the opcode was invalid.
IllegalOpcode,
/// Word was decoded, and the opcode is recognized,
/// but the instruction's format is invalid.
InvalidInstrFormat,
/// A privileged instruction was called in user mode.
PrivilegeViolation,
/// A supervisor region was accessed in user mode.
AccessViolation,
/// Not an error, but HALT!
ProgramHalted,
/// A register was loaded with a partially uninitialized value.
///
/// This will ignore loads from the stack (R6), because it is convention to push registers
/// (including uninitialized registers).
/// This also ignores loads from allocated (`.blkw`) memory in case the program writer
/// uses those as register stores.
// IDEA: So currently, the way this is implemented is that LDR Rx, R6, OFF is accepted regardless of initialization.
// We could make this stricter by keeping track of how much is allocated on the stack.
StrictRegSetUninit,
/// Memory was loaded with a partially uninitialized value.
///
/// This will ignore loads from the stack (R6), because it is convention to push registers
/// (including uninitialized registers).
/// This also ignores loads from allocated (`.blkw`) memory in case the program writer
/// uses those as register stores.
// IDEA: See StrictRegSetUninit.
StrictMemSetUninit,
/// Data was stored into MMIO with a partially uninitialized value.
StrictIOSetUninit,
/// Address to jump to is coming from an uninitialized value.
StrictJmpAddrUninit,
/// Address to read from memory is coming from an uninitialized value.
StrictMemAddrUninit,
/// PC is pointing to an uninitialized value.
StrictPCCurrUninit,
/// PC was set to an address that has an uninitialized value and will read from it next cycle.
StrictPCNextUninit,
/// The PSR was loaded with a partially uninitialized value (by RTI).
StrictPSRSetUninit,
}
impl std::fmt::Display for SimErr {
fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
match self {
SimErr::IllegalOpcode => f.write_str("simulator executed illegal opcode"),
SimErr::InvalidInstrFormat => f.write_str("simulator executed invalid instruction"),
SimErr::PrivilegeViolation => f.write_str("privilege violation"),
SimErr::AccessViolation => f.write_str("access violation"),
SimErr::ProgramHalted => f.write_str("program halted"),
SimErr::StrictRegSetUninit => f.write_str("register was set to uninitialized value (strict mode)"),
SimErr::StrictMemSetUninit => f.write_str("tried to write an uninitialized value to memory (strict mode)"),
SimErr::StrictIOSetUninit => f.write_str("tried to write an uninitialized value to memory-mapped IO (strict mode)"),
SimErr::StrictJmpAddrUninit => f.write_str("PC address was set to uninitialized value (strict mode)"),
SimErr::StrictMemAddrUninit => f.write_str("tried to access memory with an uninitialized address (strict mode)"),
SimErr::StrictPCCurrUninit => f.write_str("PC is pointing to uninitialized value (strict mode)"),
SimErr::StrictPCNextUninit => f.write_str("PC will point to uninitialized value when this instruction executes (strict mode)"),
SimErr::StrictPSRSetUninit => f.write_str("tried to set the PSR to an uninitialized value (strict mode)"),
}
}
}
impl std::error::Error for SimErr {}
/// Executes assembled code.
#[derive(Debug)]
pub struct Simulator {
/// The simulator's memory.
///
/// Note that this is held in the heap, as it is too large for the stack.
pub mem: Mem,
/// The simulator's register file.
pub reg_file: RegFile,
/// The program counter.
pub pc: u16,
/// The processor status register. See [`PSR`] for more details.
psr: PSR,
/// Saved stack pointer (the one currently not in use)
saved_sp: Word,
/// The number of subroutines or trap calls we've entered.
///
/// This is incremented when JSR/JSRR/TRAP is called,
/// and decremented when RET/JMP R7/RTI is called.
///
/// If this is 0, this is considered the global state,
/// and as such, decrementing should have no effect.
///
/// I am hoping this is large enough that it doesn't overflow :)
sr_entered: u64,
/// Whether strict mode is enabled.
///
/// Strict mode adds additional integrity checks to the simulator,
/// such as verifying initialization state is normal for provided data.
pub strict: bool,
/// Machine control.
/// If unset, the program stops.
///
/// This is publicly accessible via a reference through [`Simulator::mcr`].
mcr: Arc<AtomicBool>,
/// Allocated blocks in object file.
///
/// This field keeps track of "allocated" blocks
/// (memory written to by instructions or directives like .blkw)
/// in the current object file.
///
/// Loading and storing uninitialized data in an allocated block
/// does not cause strictness errors because we're assuming
/// the programmer is using those as data stores.
///
/// This is technically a bit lax, because it lets them write
/// into instructions but oops.
alloca: Box<[(u16, u16)]>,
/// Breakpoints for the simulator.
pub breakpoints: Vec<Breakpoint>,
/// Indicates whether the PC has been incremented in the fetch stage yet.
///
/// This is just for error handling purposes. It's used to compute
/// the PC of the instruction that caused an error. See [`Simulator::prefetch_pc`].
prefetch: bool,
/// Indicates whether the last execution hit a breakpoint.
hit_breakpoint: bool,
/// Indicates whether the OS has been loaded.
os_loaded: bool,
/// The creation strategy for uninitialized Words.
///
/// This is used to initialize the `mem` and `reg_file` fields.
word_create_strategy: WordCreateStrategy,
}
impl Simulator where Simulator: Send + Sync {}
impl Simulator {
/// Creates a new simulator with the provided initializers
/// and with the OS loaded, but without a loaded object file.
pub fn new(mut strat: WordCreateStrategy) -> Self {
strat.reset();
let mut sim = Self {
mem: Mem::new(&mut strat),
reg_file: RegFile::new(&mut strat),
pc: 0x3000,
psr: PSR::new(),
saved_sp: Word::new_init(0x3000),
sr_entered: 0,
strict: false,
alloca: Box::new([]),
mcr: Arc::default(),
breakpoints: vec![],
prefetch: false,
hit_breakpoint: false,
os_loaded: false,
word_create_strategy: strat
};
sim.load_os();
sim
}
/// Loads and initializes the operating system.
///
/// Note that this is done automatically with [`Simulator::new`].
///
/// This will initialize kernel space and create trap handlers,
/// however it will not load working IO. This can cause IO
/// traps such as `GETC` and `PUTC` to hang. The only trap that
/// is assured to function without IO is `HALT`.
///
/// To initialize the IO, use [`Simulator::open_io`].
pub fn load_os(&mut self) {
use crate::parse::parse_ast;
use crate::asm::assemble;
use std::sync::OnceLock;
static OS_OBJ_FILE: OnceLock<ObjectFile> = OnceLock::new();
if !self.os_loaded {
let obj = OS_OBJ_FILE.get_or_init(|| {
let os_file = include_str!("os.asm");
let ast = parse_ast(os_file).unwrap();
assemble(ast).unwrap()
});
self.load_obj_file(obj);
self.os_loaded = true;
}
}
/// Resets the simulator.
///
/// This sets the simulator back to the state it was in when [`Simulator::new`] was called.
/// Essentially, this resets all state fields back to their defaults,
/// and the memory and register file back to their original initialization values
/// (unless the creation strategy used to initialize this [`Simulator`] was [`WordCreateStrategy::Unseeded`]).
pub fn reset(&mut self) {
// FIXME: Do these need to be preserved:
// Breakpoints
// IO state
let strat = std::mem::replace(&mut self.word_create_strategy, WordCreateStrategy::Known(0));
*self = Simulator::new(strat);
}
/// Sets and initializes the IO handler.
pub fn open_io<IO: Into<SimIO>>(&mut self, io: IO) {
let io = std::mem::replace(&mut self.mem.io, io.into());
io.close()
}
/// Closes the IO handler, waiting for it to close.
pub fn close_io(&mut self) {
self.open_io(EmptyIO) // the illusion of choice
}
/// Loads an object file into this simulator.
pub fn load_obj_file(&mut self, obj: &ObjectFile) {
use std::cmp::Ordering;
let mut alloca = Vec::with_capacity(obj.len());
for (start, words) in obj.iter() {
self.mem.copy_obj_block(start, words);
// add this block to alloca
let len = words.len() as u16;
let end = start.wrapping_add(len);
match start.cmp(&end) {
Ordering::Less => alloca.push((start, len)),
Ordering::Equal => {},
Ordering::Greater => {
// push (start..) and (0..end) as blocks
alloca.push((start, start.wrapping_neg()));
if end != 0 { alloca.push((0, end)) };
},
}
}
alloca.sort_by_key(|&(start, _)| start);
self.alloca = alloca.into_boxed_slice();
}
/// Sets the condition codes using the provided result.
fn set_cc(&mut self, result: u16) {
match (result as i16).cmp(&0) {
std::cmp::Ordering::Less => self.psr.set_cc(0b100),
std::cmp::Ordering::Equal => self.psr.set_cc(0b010),
std::cmp::Ordering::Greater => self.psr.set_cc(0b001),
}
}
/// Gets a reference to the PSR.
pub fn psr(&self) -> &PSR {
// This is not mutable because editing the PSR can cause crashes to occur if
// privilege is tampered with during an interrupt.
&self.psr
}
/// Gets a reference to the MCR.
pub fn mcr(&self) -> &Arc<AtomicBool> {
// The mcr field is not exposed because that allows someone to swap the MCR
// with another AtomicBool, which would cause the simulator's MCR
// to be inconsistent with any other component's
&self.mcr
}
/// Sets the PC to the given address, raising any errors that occur.
///
/// The `st_check_mem` parameter indicates whether the data at the PC should be verified in strict mode.
/// This should be enabled when it is absolutely known that the PC will read from the provided address
/// on the next cycle.
///
/// This should be true when this function is used for instructions like `BR` and `JSR`
/// and should be false when this function is used to increment PC during fetch.
pub fn set_pc(&mut self, addr_word: Word, st_check_mem: bool) -> Result<(), SimErr> {
let addr = addr_word.assert_init(self.strict, SimErr::StrictJmpAddrUninit)?.get();
if self.strict && st_check_mem {
// Check next memory value is initialized:
if !self.mem.read(addr, self.default_mem_ctx())?.is_init() {
return Err(SimErr::StrictPCNextUninit);
}
}
self.pc = addr;
Ok(())
}
/// Adds an offset to the PC.
///
/// See [`Simulator::set_pc`] for details about `st_check_mem`.
pub fn offset_pc(&mut self, offset: i16, st_check_mem: bool) -> Result<(), SimErr> {
self.set_pc(Word::from(self.pc.wrapping_add_signed(offset)), st_check_mem)
}
/// Gets the value of the prefetch PC.
///
/// This function returns the value of PC before it is incremented druing fetch,
/// which is also the location of the currently executing instruction in memory.
///
/// This is useful for pointing to a given memory location in error handling,
/// as this computation always points to the memory location of the instruction.
pub fn prefetch_pc(&self) -> u16 {
self.pc - (!self.prefetch) as u16
}
/// Checks whether the address points to a memory location that was allocated
/// in the currently loaded object file.
fn in_alloca(&self, addr: u16) -> bool {
let first_post = self.alloca.partition_point(|&(start, _)| start <= addr);
if first_post == 0 { return false };
// This is the last block where start <= addr.
let (start, len) = self.alloca[first_post - 1];
// We must also check that addr < end.
// If start + len is None, that means end is greater than all possible lengths.
match start.checked_add(len) {
Some(e) => addr < e,
None => true
}
}
/// Indicates whether the last execution of the simulator hit a breakpoint.
pub fn hit_breakpoint(&self) -> bool {
self.hit_breakpoint
}
/// Computes the default memory access context,
/// which are the default flags to use (see [`Mem::read`] and [`Mem::write`]).
pub fn default_mem_ctx(&self) -> MemAccessCtx {
MemAccessCtx { privileged: self.psr.privileged(), strict: self.strict }
}
/// Interrupt, trap, and exception handler.
///
/// If priority is none, this will unconditionally initialize the trap or exception handler.
/// If priority is not none, this will run the interrupt handler only if the interrupt's priority
/// is greater than the PSR's priority.
///
/// The address provided is the address into the jump table (either the trap or interrupt vector ones).
/// This function will always jump to `mem[vect]` at the end of this function.
fn handle_interrupt(&mut self, vect: u16, priority: Option<u8>) -> Result<(), SimErr> {
if priority.is_some_and(|prio| prio <= self.psr.priority()) { return Ok(()) };
if vect == 0x25 /* HALT */ {
self.offset_pc(-1, false)?; // decrement PC so that execution goes back here
return Err(SimErr::ProgramHalted)
};
if !self.psr.privileged() {
std::mem::swap(&mut self.saved_sp, &mut self.reg_file[R6]);
}
// Push PSR, PC to supervisor stack
let old_psr = self.psr.0;
let old_pc = self.pc;
self.psr.set_privileged(true);
let mctx = self.default_mem_ctx();
let sp = &mut self.reg_file[R6];
*sp -= 1u16;
self.mem.write(sp.get(), Word::new_init(old_psr), mctx)?;
*sp -= 1u16;
self.mem.write(sp.get(), Word::new_init(old_pc), mctx)?;
// set interrupt priority
if let Some(prio) = priority {
self.psr.set_priority(prio);
}
self.sr_entered += 1;
let addr = self.mem.read(vect, self.default_mem_ctx())?;
self.set_pc(addr, true)
}
/// Runs until the tripwire condition returns false (or any of the typical breaks occur)
fn run_while(&mut self, mut tripwire: impl FnMut(&mut Simulator) -> bool) -> Result<(), SimErr> {
use std::sync::atomic::Ordering;
self.hit_breakpoint = false;
self.mcr.store(true, Ordering::Relaxed);
// event loop
// run until:
// 1. the MCR is set to 0
// 2. the tripwire condition returns false
// 3. any of the breakpoints are hit
while self.mcr.load(Ordering::Relaxed) && tripwire(self) {
match self.step() {
Ok(_) => {},
Err(SimErr::ProgramHalted) => break,
Err(e) => {
self.mcr.store(false, Ordering::Release);
return Err(e);
}
}
// After executing, check that any breakpoints were hit.
if self.breakpoints.iter().any(|bp| bp.check(self)) {
self.hit_breakpoint = true;
break;
}
}
self.mcr.store(false, Ordering::Release);
Ok(())
}
/// Execute the program.
pub fn run(&mut self) -> Result<(), SimErr> {
self.run_while(|_| true)
}
/// Simulate one step, executing one instruction.
///
/// This function is a library function and should be used when one step is needed.
/// The difference between this function and [`Simulator::step_in`] is that this
/// function can return [`SimErr::ProgramHalted`] as an error,
/// whereas `step_in` will ignore `ProgramHalted` errors.
fn step(&mut self) -> Result<(), SimErr> {
self.prefetch = true;
let word = self.mem.read(self.pc, self.default_mem_ctx())?
.assert_init(self.strict, SimErr::StrictPCCurrUninit)?
.get();
let instr = SimInstr::decode(word)?;
self.offset_pc(1, false)?;
self.prefetch = false;
match instr {
SimInstr::BR(cc, off) => {
if cc & self.psr.cc() != 0 {
self.offset_pc(off.get(), true)?;
}
},
SimInstr::ADD(dr, sr1, sr2) => {
let val1 = self.reg_file[sr1];
let val2 = match sr2 {
ImmOrReg::Imm(i2) => Word::from(i2.get()),
ImmOrReg::Reg(r2) => self.reg_file[r2],
};
let result = val1 + val2;
self.reg_file[dr].copy_word(result, self.strict, SimErr::StrictRegSetUninit)?;
self.set_cc(result.get());
},
SimInstr::LD(dr, off) => {
let ea = self.pc.wrapping_add_signed(off.get());
let write_strict = self.strict && !self.in_alloca(ea);
let val = self.mem.read(ea, self.default_mem_ctx())?;
self.reg_file[dr].copy_word(val, write_strict, SimErr::StrictRegSetUninit)?;
self.set_cc(val.get());
},
SimInstr::ST(sr, off) => {
let ea = self.pc.wrapping_add_signed(off.get());
let write_ctx = MemAccessCtx {
strict: self.strict && !self.in_alloca(ea),
..self.default_mem_ctx()
};
let val = self.reg_file[sr];
self.mem.write(ea, val, write_ctx)?;
},
SimInstr::JSR(op) => {
self.reg_file[R7].set(self.pc);
let addr = match op {
ImmOrReg::Imm(off) => Word::from(self.pc.wrapping_add_signed(off.get())),
ImmOrReg::Reg(br) => self.reg_file[br],
};
self.sr_entered += 1;
self.set_pc(addr, true)?;
},
SimInstr::AND(dr, sr1, sr2) => {
let val1 = self.reg_file[sr1];
let val2 = match sr2 {
ImmOrReg::Imm(i2) => Word::from(i2.get()),
ImmOrReg::Reg(r2) => self.reg_file[r2],
};
let result = val1 & val2;
self.reg_file[dr].copy_word(result, self.strict, SimErr::StrictRegSetUninit)?;
self.set_cc(result.get());
},
SimInstr::LDR(dr, br, off) => {
let ea = self.reg_file[br]
.assert_init(self.strict, SimErr::StrictMemAddrUninit)?
.get()
.wrapping_add_signed(off.get());
let write_strict = self.strict && br != R6 && !self.in_alloca(ea);
let val = self.mem.read(ea, self.default_mem_ctx())?;
self.reg_file[dr].copy_word(val, write_strict, SimErr::StrictRegSetUninit)?;
self.set_cc(val.get());
},
SimInstr::STR(sr, br, off) => {
let ea = self.reg_file[br]
.assert_init(self.strict, SimErr::StrictMemAddrUninit)?
.get()
.wrapping_add_signed(off.get());
let write_ctx = MemAccessCtx {
strict: self.strict && br != R6 && !self.in_alloca(ea),
..self.default_mem_ctx()
};
let val = self.reg_file[sr];
self.mem.write(ea, val, write_ctx)?;
},
SimInstr::RTI => {
if self.psr.privileged() {
let mctx = self.default_mem_ctx();
let sp = (&mut self.reg_file[R6])
.assert_init(self.strict, SimErr::StrictMemAddrUninit)?;
let pc = self.mem.read(sp.get(), mctx)?
.assert_init(self.strict, SimErr::StrictJmpAddrUninit)?
.get();
*sp += 1u16;
let psr = self.mem.read(sp.get(), mctx)?
.assert_init(self.strict, SimErr::StrictPSRSetUninit)?
.get();
*sp += 1u16;
self.pc = pc;
self.psr = PSR(psr);
if !self.psr.privileged() {
std::mem::swap(&mut self.saved_sp, &mut self.reg_file[R6]);
}
self.sr_entered = self.sr_entered.saturating_sub(1);
} else {
return Err(SimErr::PrivilegeViolation);
}
},
SimInstr::NOT(dr, sr) => {
let val = self.reg_file[sr];
let result = !val;
self.reg_file[dr].copy_word(result, self.strict, SimErr::StrictRegSetUninit)?;
self.set_cc(result.get());
},
SimInstr::LDI(dr, off) => {
let shifted_pc = self.pc.wrapping_add_signed(off.get());
let ea = self.mem.read(shifted_pc, self.default_mem_ctx())?
.assert_init(self.strict, SimErr::StrictMemAddrUninit)?
.get();
let write_strict = self.strict && !self.in_alloca(ea);
let val = self.mem.read(ea, self.default_mem_ctx())?;
self.reg_file[dr].copy_word(val, write_strict, SimErr::StrictRegSetUninit)?;
self.set_cc(val.get());
},
SimInstr::STI(sr, off) => {
let shifted_pc = self.pc.wrapping_add_signed(off.get());
let ea = self.mem.read(shifted_pc, self.default_mem_ctx())?
.assert_init(self.strict, SimErr::StrictMemAddrUninit)?
.get();
let write_ctx = MemAccessCtx {
strict: self.strict && !self.in_alloca(ea),
..self.default_mem_ctx()
};
let val = self.reg_file[sr];
self.mem.write(ea, val, write_ctx)?;
},
SimInstr::JMP(br) => {
// check for RET
if br.0 == 7 {
self.sr_entered = self.sr_entered.saturating_sub(1);
}
let addr = self.reg_file[br];
self.set_pc(addr, true)?;
},
SimInstr::LEA(dr, off) => {
let ea = self.pc.wrapping_add_signed(off.get());
self.reg_file[dr].set(ea);
},
SimInstr::TRAP(vect) => {
self.handle_interrupt(vect.get(), None)?;
},
}
Ok(())
}
/// Simulate one step, executing one instruction.
pub fn step_in(&mut self) -> Result<(), SimErr> {
match self.step() {
Err(SimErr::ProgramHalted) => Ok(()),
r => r
}
}
/// Simulate one step, executing one instruction and running through entire subroutines as a single step.
pub fn step_over(&mut self) -> Result<(), SimErr> {
let curr_frame = self.sr_entered;
// always do at least one step
match self.step() {
Err(SimErr::ProgramHalted) => return Ok(()),
r => r?
};
// run until we have landed back in the same frame
self.run_while(|sim| curr_frame < sim.sr_entered)
}
/// Run through the simulator's execution until the subroutine is exited.
pub fn step_out(&mut self) -> Result<(), SimErr> {
let curr_frame = self.sr_entered;
// always do at least one step
match self.step() {
Err(SimErr::ProgramHalted) => return Ok(()),
r => r?
};
// run until we have landed in a smaller frame
if curr_frame != 0 {
self.run_while(|sim| curr_frame <= sim.sr_entered)?;
}
Ok(())
}
}
impl Default for Simulator {
fn default() -> Self {
Self::new(Default::default())
}
}
/// A wrapper over `u16` in order to faciliate the PSR.
///
/// The word is encoded as the following:
/// - `PSR[15..16]`: Privilege mode (0 = supervisor, 1 = user)
/// - `PSR[8..11]`: Interrupt priority
/// - `PSR[0..3]`: Condition codes
///
/// Each of these are exposed as the [`PSR::privileged`], [`PSR::priority`], and [`PSR::cc`] values.
#[allow(clippy::upper_case_acronyms)]
#[repr(transparent)]
pub struct PSR(pub u16);
impl PSR {
/// Creates a PSR with a default value.
pub fn new() -> Self {
PSR(0x8002)
}
/// Checks whether the simulator is in privileged mode.
/// - `true` = supervisor mode
/// - `false` = user mode
pub fn privileged(&self) -> bool {
(self.0 >> 15) == 0
}
/// Checks the current interrupt priority of the simulator.
pub fn priority(&self) -> u8 {
((self.0 >> 8) & 0b111) as u8
}
/// Checks the condition code of the simulator.
pub fn cc(&self) -> u8 {
(self.0 & 0b111) as u8
}
/// Sets whether the simulator is in privileged mode.
pub fn set_privileged(&mut self, privl: bool) {
self.0 &= 0x7FFF;
self.0 |= (!privl as u16) << 15;
}
/// Sets the current interrupt priority of the simulator.
pub fn set_priority(&mut self, prio: u8) {
self.0 &= 0xF8FF;
self.0 |= (prio as u16) << 8;
}
/// Sets the condition code of the simulator.
pub fn set_cc(&mut self, cc: u8) {
self.0 &= 0xFFF8;
self.0 |= cc as u16;
}
}
impl Default for PSR {
fn default() -> Self {
Self::new()
}
}
impl std::fmt::Debug for PSR {
fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
use std::fmt::Write;
struct CC(u8);
impl std::fmt::Debug for CC {
fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
if self.0 & 0b100 != 0 { f.write_char('N')?; };
if self.0 & 0b010 != 0 { f.write_char('Z')?; };
if self.0 & 0b001 != 0 { f.write_char('P')?; };
Ok(())
}
}
f.debug_struct("PSR")
.field("privileged", &self.privileged())
.field("priority", &self.priority())
.field("cc", &CC(self.cc()))
.finish()
}
}