1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
use crate::math::linear::{interpolate, normalize, range};
use crate::{Scale, ScaleKind};

const DEFAULT_TICK_COUNT: usize = 11;

/// LinearScale represents axis scale with numerical values.
#[derive(Clone)]
pub struct LinearScale {
    /// Start of the scale domain.
    domain_start: f32,

    /// End of the scale domain.
    domain_end: f32,

    /// Start of the scale range.
    range_start: i32,

    /// End of the scale range.
    range_end: i32,

    /// Count of ticks on scale axis.
    tick_count: usize,
}

impl LinearScale {
    /// Create a new LinearScale.
    pub fn new(domain_start: f32, domain_end: f32, range_start: i32, range_end: i32) -> Self {
        Self {
            domain_start,
            domain_end,
            range_start,
            range_end,
            tick_count: DEFAULT_TICK_COUNT,
        }
    }

    /// Get scale range start.
    pub fn range_start(&self) -> i32 {
        self.range_start
    }

    /// Get scale range end.
    pub fn range_end(&self) -> i32 {
        self.range_end
    }

    // Compute the step for each tick.
    fn compute_tick_step(&self, start: f32, end: f32) -> f32 {
        let mut step_denominator = 0_f32;
        if self.tick_count as f32 > step_denominator {
            step_denominator = self.tick_count as f32;
        }

        let step = range(start, end) / step_denominator;
        let power = (step.ln() / 10_f32.ln()).trunc() as i32;
        let error = step / 10_f32.powi(power);

        let mut dynamic = 1;
        if error >= 50_f32.sqrt() {
            dynamic = 10;
        } else if error >= 10_f32.sqrt() {
            dynamic = 5;
        } else if error >= 2_f32.sqrt() {
            dynamic = 2;
        };

        if power < 0 {
            return -(10_f32.powi(-power)) / dynamic as f32;
        }

        dynamic as f32 * 10_f32.powi(power)
    }

    // Calculate vector of ticks for positive step.
    fn ticks_positive_step(&self, step: f32) -> Vec<f32> {
        let mut res = Vec::new();

        let start = (self.domain_start / step).ceil();
        let end = (self.domain_end / step).floor();
        let ticks_count = (range(start, end) + 1_f32).ceil() as i32;
        for i in 0..ticks_count {
            res.push((start + i as f32) * step);
        }

        res
    }

    // Calculate vector of ticks for negative step.
    fn ticks_negative_step(&self, step: f32) -> Vec<f32> {
        let mut res = Vec::new();

        let start = (self.domain_start as f32 * step).floor();
        let end = (self.domain_end as f32 * step).ceil();
        let ticks_count = (range(end, start) + 1_f32).ceil() as i32;
        for i in 0..ticks_count {
            res.push((start - i as f32) / step);
        }

        res
    }
}

impl Scale<f32> for LinearScale {
    fn scale(&self, domain: &f32) -> f32 {
        let normalized = normalize(self.domain_start, self.domain_end, *domain);
        interpolate(self.range_start as f32, self.range_end as f32, normalized)
    }

    fn ticks(&self) -> Vec<f32> {
        if (self.domain_end - self.domain_start).abs() < f32::EPSILON && self.tick_count > 0 {
            return vec![self.domain_start as f32];
        }

        let step = self.compute_tick_step(self.domain_start, self.domain_end);
        if step > 0_f32 {
            return self.ticks_positive_step(step);
        }

        self.ticks_negative_step(step)
    }

    fn kind(&self) -> ScaleKind {
        ScaleKind::Linear
    }

    fn bandwidth(&self) -> f32 {
        0_f32
    }

    fn is_range_reversed(&self) -> bool {
        self.range_start > self.range_end
    }

    fn tick_offset(&self) -> f32 {
        0_f32
    }
}

#[cfg(test)]
mod tests {
    use super::*;

    #[test]
    fn linear_scale_basic() {
        let linear_scale = LinearScale::new(0_f32, 200_f32, 540, 0);

        assert_eq!(linear_scale.range_start(), 540);
        assert_eq!(linear_scale.range_end(), 0);
        assert_eq!(
            *linear_scale.ticks(),
            vec![
                0_f32, 20_f32, 40_f32, 60_f32, 80_f32, 100_f32, 120_f32, 140_f32, 160_f32, 180_f32,
                200_f32
            ]
        );
        assert!((linear_scale.scale(&24_f32) - 475.2_f32).abs() < f32::EPSILON);
        assert_eq!(linear_scale.kind(), ScaleKind::Linear);
        assert!((linear_scale.bandwidth() - 0_f32).abs() < f32::EPSILON);
        assert!(linear_scale.is_range_reversed());
        assert!((linear_scale.tick_offset() - 0_f32).abs() < f32::EPSILON);
    }
}