1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
/// low level wrapper for the state machine, encoding and decoding from lapin-async
use lapin_async::connection::*;
use lapin_async::format::frame::*;

use nom::{IResult,Offset};
use cookie_factory::GenError;
use bytes::{BufMut, BytesMut};
use std::cmp;
use std::collections::HashMap;
use std::iter::repeat;
use std::io::{self,Error,ErrorKind};
use futures::{Async,AsyncSink,Poll,Sink,StartSend,Stream,Future,future,task};
use tokio_io::{AsyncRead,AsyncWrite};
use tokio_io::codec::{Decoder,Encoder,Framed};
use channel::BasicProperties;
use client::ConnectionOptions;

/// implements tokio-io's Decoder and Encoder
pub struct AMQPCodec {
    pub frame_max: u32,
}

impl Decoder for AMQPCodec {
    type Item = Frame;
    type Error = io::Error;

    fn decode(&mut self, buf: &mut BytesMut) -> Result<Option<Frame>, io::Error> {
        let (consumed, f) = match frame(buf) {
          IResult::Incomplete(_) => {
            return Ok(None)
          },
          IResult::Error(e) => {
            return Err(io::Error::new(io::ErrorKind::Other, format!("parse error: {:?}", e)))
          },
          IResult::Done(i, frame) => {
            (buf.offset(i), frame)
          }
        };

        trace!("amqp decoder; frame={:?}", f);

        buf.split_to(consumed);

        Ok(Some(f))
    }
}

impl Encoder for AMQPCodec {
    type Item = Frame;
    type Error = io::Error;

    fn encode(&mut self, frame: Frame, buf: &mut BytesMut) -> Result<(), Self::Error> {
      let frame_max = cmp::max(self.frame_max, 8192) as usize;
      trace!("encoder; frame={:?}", frame);
      let offset = buf.len();
      loop {
        // If the buffer starts running out of capacity (the threshold is 1/4 of a frame), we
        // reserve more bytes upfront to avoid putting too much strain on the allocator.
        if buf.remaining_mut() < frame_max / 4 {
          trace!("encoder; reserve={}", frame_max * 2);
          buf.reserve(frame_max * 2);
        }

        let gen_res = match &frame {
          &Frame::ProtocolHeader => {
            gen_protocol_header((buf, offset)).map(|tup| tup.1)
          },
          &Frame::Heartbeat(_) => {
            gen_heartbeat_frame((buf, offset)).map(|tup| tup.1)
          },
          &Frame::Method(channel, ref method) => {
            gen_method_frame((buf, offset), channel, method).map(|tup| tup.1)
          },
          &Frame::Header(channel_id, class_id, ref header) => {
            gen_content_header_frame((buf, offset), channel_id, class_id, header.body_size, &header.properties).map(|tup| tup.1)
          },
          &Frame::Body(channel_id, ref data) => {
            gen_content_body_frame((buf, offset), channel_id, data).map(|tup| tup.1)
          }
        };

        match gen_res {
          Ok(sz) => {
            trace!("encoder; frame_size={}", sz - offset);
            return Ok(());
          },
          Err(GenError::BufferTooSmall(sz)) => {
            // BufferTooSmall error variant returns the index the next write would have
            // occured if there was enough space in the buffer. Thus we subtract the
            // buffer's length to know how much bytes we sould make available.
            let length = buf.len();
            trace!("encoder; sz={} length={} extend={}", sz, length, sz - length);
            buf.extend(repeat(0).take(sz - length));
          },
          Err(e) => {
            error!("error generating frame: {:?}", e);
            return Err(Error::new(ErrorKind::InvalidData, "could not generate"));
          }
        }
      }
    }
}

/// Wrappers over a `Framed` stream using `AMQPCodec` and lapin-async's `Connection`
pub struct AMQPTransport<T> {
  upstream:  Framed<T,AMQPCodec>,
  consumers: HashMap<String, task::Task>,
  pub conn:  Connection,
}

impl<T> AMQPTransport<T>
   where T: AsyncRead+AsyncWrite,
         T: Send,
         T: 'static               {

  /// starts the connection process
  ///
  /// returns a future of a `AMQPTransport` that is connected
  pub fn connect(stream: T, options: ConnectionOptions) -> Box<Future<Item = AMQPTransport<T>, Error = io::Error> + Send> {
    let mut conn = Connection::new();
    conn.set_credentials(&options.username, &options.password);
    conn.set_vhost(&options.vhost);
    conn.set_frame_max(options.frame_max);
    conn.set_heartbeat(options.heartbeat);

    Box::new(future::result(conn.connect()).map_err(|e| {
      let err = format!("Failed to connect: {:?}", e);
      Error::new(ErrorKind::ConnectionAborted, err)
    }).and_then(|_| {
        let codec = AMQPCodec {
          frame_max: conn.configuration.frame_max,
        };
        let t = AMQPTransport {
          upstream:     stream.framed(codec),
          consumers:    HashMap::new(),
          conn:         conn,
        };

        AMQPTransportConnector {
          transport: Some(t),
        }
    }))
  }

  /// Send a frame to the broker.
  ///
  /// # Notes
  ///
  /// This function only appends the frame to a queue, to actually send the frame you have to
  /// call either `poll` or `poll_send`.
  pub fn send_frame(&mut self, frame: Frame) {
    self.conn.frame_queue.push_back(frame);
  }

  /// Send content frames to the broker.
  ///
  /// # Notes
  ///
  /// This function only appends the frames to a queue, to actually send the frames you have to
  /// call either `poll` or `poll_send`.
  pub fn send_content_frames(&mut self, channel_id: u16, payload: &[u8], properties: BasicProperties) {
    self.conn.send_content_frames(channel_id, 60, payload, properties);
  }

  fn maybe_notify_consumers(&self) {
    if self.conn.has_pending_deliveries() {
      for t in self.consumers.values() {
        t.notify();
      }
    }
  }

  /// Poll the network to receive & handle incoming frames.
  ///
  /// # Return value
  ///
  /// This function will always return `Ok(Async::NotReady)` except in two cases:
  ///
  /// * In case of error, it will return `Err(e)`
  /// * If the socket was closed, it will return `Ok(Async::Ready(()))`
  fn poll_recv(&mut self) -> Poll<(), io::Error> {
    let mut got_frame = false;
    loop {
      match self.upstream.poll() {
        Ok(Async::Ready(Some(frame))) => {
          trace!("transport poll_recv; frame={:?}", frame);
          if let Err(e) = self.conn.handle_frame(frame) {
            let err = format!("failed to handle frame: {:?}", e);
            return Err(io::Error::new(io::ErrorKind::Other, err));
          }
          got_frame = true;
        },
        Ok(Async::Ready(None)) => {
          trace!("transport poll_recv; status=Ready(None)");
          return Ok(Async::Ready(()));
        },
        Ok(Async::NotReady) => {
          trace!("transport poll_recv; status=NotReady");
          if got_frame {
            self.maybe_notify_consumers();
          }
          return Ok(Async::NotReady);
        },
        Err(e) => {
          error!("transport poll_recv; status=Err({:?})", e);
          return Err(From::from(e));
        },
      };
    }
  }

  /// Poll the network to send outcoming frames.
  fn poll_send(&mut self) -> Poll<(), io::Error> {
    while let Some(frame) = self.conn.next_frame() {
      trace!("transport poll_send; frame={:?}", frame);
      match self.start_send(frame)? {
        AsyncSink::Ready => {
          trace!("transport poll_send; status=Ready");
        },
        AsyncSink::NotReady(frame) => {
          trace!("transport poll_send; status=NotReady");
          self.conn.frame_queue.push_front(frame);
          return Ok(Async::NotReady);
        }
      }
    }
    self.poll_complete()
  }

  /// Register a consumer so that it gets notified when messages are ready
  pub fn register_consumer(&mut self, consumer_tag: &str, consumer_task: task::Task) {
    self.consumers.insert(consumer_tag.to_string(), consumer_task);
  }
}

impl<T> Stream for AMQPTransport<T>
    where T: AsyncRead + AsyncWrite,
          T: Send,
          T: 'static {
    type Item = ();
    type Error = io::Error;

    fn poll(&mut self) -> Poll<Option<()>, io::Error> {
      trace!("transport poll");
      if let Async::Ready(()) = self.poll_recv()? {
        trace!("poll transport; status=Ready");
        return Err(io::Error::new(io::ErrorKind::ConnectionAborted, "The connection was closed by the remote peer"));
      }
      self.poll_send().map(|r| r.map(Some))
    }
}

impl <T> Sink for AMQPTransport<T>
    where T: AsyncWrite,
          T: Send,
          T: 'static {
    type SinkItem = Frame;
    type SinkError = io::Error;

    fn start_send(&mut self, frame: Self::SinkItem) -> StartSend<Self::SinkItem, Self::SinkError> {
        trace!("transport start_send; frame={:?}", frame);
        self.upstream.start_send(frame)
    }

    fn poll_complete(&mut self) -> Poll<(), Self::SinkError> {
        trace!("transport poll_complete");
        self.upstream.poll_complete()
    }
}

/// implements a future of `AMQPTransport`
///
/// this structure is used to perform the AMQP handshake and provide
/// a connected transport afterwards
pub struct AMQPTransportConnector<T> {
  pub transport: Option<AMQPTransport<T>>,
}

impl<T> Future for AMQPTransportConnector<T>
    where T: AsyncRead + AsyncWrite,
          T: Send,
          T: 'static {

  type Item  = AMQPTransport<T>;
  type Error = io::Error;

  fn poll(&mut self) -> Poll<Self::Item, Self::Error> {
    trace!("connector poll; has_transport={:?}", !self.transport.is_none());
    let mut transport = self.transport.take().unwrap();

    transport.poll()?;

    trace!("connector poll; state=ConnectionState::{:?}", transport.conn.state);
    if transport.conn.state == ConnectionState::Connected {
      return Ok(Async::Ready(transport))
    }

    self.transport = Some(transport);
    Ok(Async::NotReady)
  }
}

#[macro_export]
macro_rules! lock_transport (
    ($t: expr) => ({
        match $t.lock() {
            Ok(t) => t,
            Err(_) => if $t.is_poisoned() {
                return Err(io::Error::new(io::ErrorKind::Other, "Transport mutex is poisoned"))
            } else {
                task::current().notify();
                return Ok(Async::NotReady)
            }
        }
    });
);

#[cfg(test)]
mod tests {
  extern crate env_logger;

  use super::*;

  #[test]
  fn encode_multiple_frames() {
    let _ = env_logger::try_init();

    let mut codec = AMQPCodec { frame_max: 8192 };
    let mut buffer = BytesMut::with_capacity(8192);
    let r = codec.encode(Frame::Heartbeat(0), &mut buffer);
    assert_eq!(false, r.is_err());
    assert_eq!(8, buffer.len());
    let r = codec.encode(Frame::Heartbeat(0), &mut buffer);
    assert_eq!(false, r.is_err());
    assert_eq!(16, buffer.len());
    let r = codec.encode(Frame::Heartbeat(0), &mut buffer);
    assert_eq!(false, r.is_err());
    assert_eq!(24, buffer.len());
  }

  #[test]
  fn encode_nested_frame() {
    use lapin_async::content::ContentHeader;

    let _ = env_logger::try_init();

    let mut codec = AMQPCodec { frame_max: 8192 };
    let mut buffer = BytesMut::with_capacity(8192);
    let frame = Frame::Header(0, 10, ContentHeader {
      class_id: 10,
      weight: 0,
      body_size: 64,
      properties: BasicProperties::default()
    });
    let r = codec.encode(frame, &mut buffer);
    assert_eq!(false, r.is_err());
    assert_eq!(22, buffer.len());
  }

  #[test]
  fn encode_initial_extend_buffer() {
    let _ = env_logger::try_init();

    let mut codec = AMQPCodec { frame_max: 8192 };
    let frame_max = codec.frame_max as usize;
    let mut buffer = BytesMut::new();

    let r = codec.encode(Frame::Heartbeat(0), &mut buffer);
    assert_eq!(false, r.is_err());
    assert_eq!(true, buffer.capacity() >= frame_max);
    assert_eq!(8, buffer.len());
  }

  #[test]
  fn encode_anticipation_extend_buffer() {
    let _ = env_logger::try_init();

    let mut codec = AMQPCodec { frame_max: 8192 };
    let frame_max = codec.frame_max as usize;
    let mut buffer = BytesMut::new();

    let r = codec.encode(Frame::Heartbeat(0), &mut buffer);
    assert_eq!(false, r.is_err());
    assert_eq!(frame_max * 2, buffer.capacity());
    assert_eq!(8, buffer.len());

    let payload = repeat(0u8)
      // Use 80% of the remaining space (it shouldn't trigger buffer capacity expansion)
      .take(((buffer.capacity() as f64 - buffer.len() as f64) * 0.8) as usize)
      .collect::<Vec<u8>>();
    let r = codec.encode(Frame::Body(1, payload), &mut buffer);
    assert_eq!(false, r.is_err());
    assert_eq!(frame_max * 2, buffer.capacity());

    let payload = repeat(0u8)
      // Use 80% of the remaining space (it should trigger a buffer capacity expansion)
      .take(((buffer.capacity() as f64 - buffer.len() as f64) * 0.8) as usize)
      .collect::<Vec<u8>>();
    let r = codec.encode(Frame::Body(1, payload), &mut buffer);
    assert_eq!(false, r.is_err());
    assert_eq!(frame_max * 4, buffer.capacity());
  }
}