1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
use crate::field::traits::IsField;
use crate::unsigned_integer::element::UnsignedInteger;

#[derive(Debug, Clone, PartialEq, Eq)]
pub struct P448GoldilocksPrimeField;
pub type U448 = UnsignedInteger<7>;

/// Goldilocks Prime p = 2^448 - 2^224 - 1
pub const P448_GOLDILOCKS_PRIME_FIELD_ORDER: U448 =
    U448::from_hex_unchecked("fffffffffffffffffffffffffffffffffffffffffffffffffffffffeffffffffffffffffffffffffffffffffffffffffffffffffffffffff");

/// 448-bit unsigned integer represented as
/// a size 8 `u64` array `limbs` of 56-bit words.
/// The least significant word is in the left most position.
#[derive(Debug, Copy, Clone, PartialEq, Eq, PartialOrd, Ord)]
pub struct U56x8 {
    limbs: [u64; 8],
}

impl IsField for P448GoldilocksPrimeField {
    type BaseType = U56x8;

    fn add(a: &U56x8, b: &U56x8) -> U56x8 {
        let mut limbs = [0u64; 8];
        for (i, limb) in limbs.iter_mut().enumerate() {
            *limb = a.limbs[i] + b.limbs[i];
        }

        let mut sum = U56x8 { limbs };
        Self::weak_reduce(&mut sum);
        sum
    }

    /// Implements fast Karatsuba Multiplication optimized for the
    /// Godilocks Prime field. Taken from Mike Hamburg's implemenation:
    /// https://sourceforge.net/p/ed448goldilocks/code/ci/master/tree/src/p448/arch_ref64/f_impl.c
    fn mul(a: &U56x8, b: &U56x8) -> U56x8 {
        let (a, b) = (&a.limbs, &b.limbs);
        let mut c = [0u64; 8];

        let mut accum0 = 0u128;
        let mut accum1 = 0u128;
        let mut accum2: u128;

        let mask = (1u64 << 56) - 1;

        let mut aa = [0u64; 4];
        let mut bb = [0u64; 4];
        let mut bbb = [0u64; 4];

        for i in 0..4 {
            aa[i] = a[i] + a[i + 4];
            bb[i] = b[i] + b[i + 4];
            bbb[i] = bb[i] + b[i + 4];
        }

        let widemul = |a: u64, b: u64| -> u128 { (a as u128) * (b as u128) };

        for i in 0..4 {
            accum2 = 0;

            for j in 0..=i {
                accum2 += widemul(a[j], b[i - j]);
                accum1 += widemul(aa[j], bb[i - j]);
                accum0 += widemul(a[j + 4], b[i - j + 4]);
            }
            for j in (i + 1)..4 {
                accum2 += widemul(a[j], b[8 - (j - i)]);
                accum1 += widemul(aa[j], bbb[4 - (j - i)]);
                accum0 += widemul(a[j + 4], bb[4 - (j - i)]);
            }

            accum1 -= accum2;
            accum0 += accum2;

            c[i] = (accum0 as u64) & mask;
            c[i + 4] = (accum1 as u64) & mask;

            accum0 >>= 56;
            accum1 >>= 56;
        }

        accum0 += accum1;
        accum0 += c[4] as u128;
        accum1 += c[0] as u128;
        c[4] = (accum0 as u64) & mask;
        c[0] = (accum1 as u64) & mask;

        accum0 >>= 56;
        accum1 >>= 56;

        c[5] += accum0 as u64;
        c[1] += accum1 as u64;

        U56x8 { limbs: c }
    }

    fn sub(a: &U56x8, b: &U56x8) -> U56x8 {
        let co1 = ((1u64 << 56) - 1) * 2;
        let co2 = co1 - 2;

        let mut limbs = [0u64; 8];
        for (i, limb) in limbs.iter_mut().enumerate() {
            *limb =
                a.limbs[i]
                    .wrapping_sub(b.limbs[i])
                    .wrapping_add(if i == 4 { co2 } else { co1 });
        }

        let mut res = U56x8 { limbs };
        Self::weak_reduce(&mut res);
        res
    }

    fn neg(a: &U56x8) -> U56x8 {
        let zero = Self::zero();
        Self::sub(&zero, a)
    }

    fn inv(a: &U56x8) -> U56x8 {
        Self::pow(a, P448_GOLDILOCKS_PRIME_FIELD_ORDER - U448::from_u64(2))
    }

    fn div(a: &U56x8, b: &U56x8) -> U56x8 {
        let b_inv = Self::inv(b);
        Self::mul(a, &b_inv)
    }

    fn eq(a: &U56x8, b: &U56x8) -> bool {
        a.limbs == b.limbs
    }

    fn zero() -> U56x8 {
        U56x8 { limbs: [0u64; 8] }
    }

    fn one() -> U56x8 {
        let mut limbs = [0u64; 8];
        limbs[0] = 1;
        U56x8 { limbs }
    }

    fn from_u64(x: u64) -> U56x8 {
        let mut limbs = [0u64; 8];
        limbs[0] = x & ((1u64 << 56) - 1);
        limbs[1] = x >> 56;
        U56x8 { limbs }
    }

    fn from_base_type(x: U56x8) -> U56x8 {
        let mut x = x;
        Self::weak_reduce(&mut x);
        x
    }
}

impl P448GoldilocksPrimeField {
    fn weak_reduce(a: &mut U56x8) {
        let a = &mut a.limbs;

        let mask = (1u64 << 56) - 1;
        let tmp = a[7] >> 56;
        a[4] += tmp;

        for i in (1..8).rev() {
            a[i] = (a[i] & mask) + (a[i - 1] >> 56);
        }

        a[0] = (a[0] & mask) + tmp;
    }
}

impl U56x8 {
    pub const fn from(value: &str) -> Self {
        let mut result = [0u64; 8];
        let mut limb = 0;
        let mut limb_index = 0;
        let mut shift = 0;
        let value = value.as_bytes();
        let mut i: usize = value.len();
        while i > 0 {
            i -= 1;
            limb |= match value[i] {
                c @ b'0'..=b'9' => (c as u64 - '0' as u64) << shift,
                c @ b'a'..=b'f' => (c as u64 - 'a' as u64 + 10) << shift,
                c @ b'A'..=b'F' => (c as u64 - 'A' as u64 + 10) << shift,
                _ => {
                    panic!("Malformed hex expression.")
                }
            };
            shift += 4;
            if shift == 56 && limb_index < 7 {
                result[limb_index] = limb;
                limb = 0;
                limb_index += 1;
                shift = 0;
            }
        }
        result[limb_index] = limb;

        U56x8 { limbs: result }
    }
}

#[cfg(test)]
mod tests {
    use super::*;

    #[test]
    fn construc_u56x8_from_hex_string_1() {
        let hex_str = "1";
        let num = U56x8::from(hex_str);
        assert_eq!(num.limbs, [1, 0, 0, 0, 0, 0, 0, 0]);
    }

    #[test]
    fn construct_u56x8_from_hex_string_2() {
        let hex_str = "49bbeeaa7102b38a0cfba4634f64a288bcb9b1366599f7afcb5453567ef7c34cce0f7139c6dea4841497172f637c7bbbf3ca1990ad88381e";
        let num = U56x8::from(hex_str);
        assert_eq!(
            num.limbs,
            [
                56886054472923166,
                6526028801096691,
                16262733217666199,
                35738265244798833,
                43338005839369046,
                45749290377754213,
                38857821720366948,
                20754307036021427
            ]
        );
    }

    #[test]
    fn p448_add_test_1() {
        let num1 = U56x8::from("73c7941e36ee1e12b2105fb96634848d62def10bc1782576cfa7f54486820202847bbfb2e8f89ff7707f9913b8cf9b9efaf2029cfd6d3fa9");
        let num2 = U56x8::from("f3ef02193a11b6ea80be4bd2944d32c4674456a888b470b14e0cf223bed114bb28146d967f0d220cf20be2016dc84f51e5d5e29a71751f06");
        let num3 = P448GoldilocksPrimeField::add(&num1, &num2);
        assert_eq!(num3, U56x8::from("67b6963770ffd4fd32ceab8bfa81b751ca2347b44a2c96281db4e769455316bdac902d496805c204628b7b152697eaf0e0c7e5376ee25eb0"));
    }

    #[test]
    fn p448_sub_test_1() {
        let num1 = U56x8::from("22264a9d5272984a996cc5eef6bd165e63bc70f2050bbd5bc24343df9cc25f826cef7bff7466963a82cd59f36671c724c53b8b27330ea076");
        let num2 = U56x8::from("7a0063b5cd729df62c0e77071727639e06d0892eacb505569e8b47a99175d1d09a4bd7c22a2168c1fb9f3de31d9633d92341f84d000633b1");
        let num3 = P448GoldilocksPrimeField::sub(&num1, &num2);
        assert_eq!(num3, U56x8::from("a825e6e784fffa546d5e4ee7df95b2c05cebe7c35856b80523b7fc350b4c8db1d2a3a43d4a452d78872e1c1048db934ba1f992da33086cc4"));
    }

    #[test]
    fn p448_neg_test_1() {
        let num1 = U56x8::from("21183d1faa857cd3f08d54871837b06d70af4e6b85173c0ff02685147f38e8b9af3141baad0067f3514a527bd3e7405a953c3a8fa9a15bb3");
        let num2 = P448GoldilocksPrimeField::neg(&num1);
        assert_eq!(num2, U56x8::from("dee7c2e0557a832c0f72ab78e7c84f928f50b1947ae8c3f00fd97aea80c7174650cebe4552ff980caeb5ad842c18bfa56ac3c570565ea44c"));
    }

    #[test]
    fn p448_mul_test_1() {
        let num1 = U56x8::from("a");
        let num2 = U56x8::from("b");
        let num3 = P448GoldilocksPrimeField::mul(&num1, &num2);
        assert_eq!(num3, U56x8::from("6e"));
    }

    #[test]
    fn p448_mul_test_2() {
        let num1 = U56x8::from("b7aa542ac8824fbf654ee0ab4ea5eb3b0ad65b48bfef5e4d8b84ab5737e9283c06ecbadd799688cdf73cd7d077d53b5e6f738b264086d034");
        let num2 = U56x8::from("89a36d8b491f5a9af136a35061a59aa2c65353a3c99bb205a53c7ae2f37e6ae492f24248fc549344ba2f203c6d5b2b5dab216fdd1a7dcf87");
        let num3 = P448GoldilocksPrimeField::mul(&num1, &num2);
        assert_eq!(num3, U56x8::from("f61c57f70d8a1eaf261907d08eb1086c2289f7bbb6ff6a0dfd016f91ac9eda658879b52a654a10b2ce123717fad3ab15b1e77ce643683886"));
    }

    #[test]
    fn p448_pow_test_1() {
        let num1 = U56x8::from("6b1b1d952930ee34fb6ed3521f7653293fd7e01de2027673d3d5a0bf3dc0688530bec50b3dfca4df28cc432bec1198e17fde3e1cc79e5732");
        let num2 = P448GoldilocksPrimeField::pow(&num1, 65537u64);
        assert_eq!(num2, U56x8::from("ec48eda1579a0879c01e8853e4a718ede9cd6bcf88d6696b47dc4dce7d2acdd1a37674aa455d84126800893975c95bb47c40b098a9e30836"));
    }

    #[test]
    fn p448_inv_test_1() {
        let num1 = U56x8::from("b86e226f5ac29af28c74e272fc129ab167798f70dedd2ce76aa76204a23beb74c8ddba2a643196c62ee35a18472d6de7d82b6af4b2fc5e58");
        let num2 = U56x8::from("bb2bd89a1297c7a6052b41be503aa7de2cd6e6775396e76bf995f27f1dccf69131067824ded693bdd6e58fe7c2276fa92ec1d9a0048b9be6");
        let num3 = P448GoldilocksPrimeField::div(&num1, &num2);
        assert_eq!(num3, U56x8::from("707b5cc75967b58ebd28d14d4ed7ed9eaae1187d0b359c7733cf61b1a5c87fc88228ca532c50f19d1ba57146ca2e38417922033f647c8d9"));
    }

    #[test]
    fn p448_from_u64_test_1() {
        let num = P448GoldilocksPrimeField::from_u64(2012613457133209520u64);
        assert_eq!(num, U56x8::from("1bee3d46a69887b0"));
    }

    #[test]
    fn p448_from_base_type_test_1() {
        let mut limbs = [0u64; 8];
        limbs[0] = 15372427657916355716u64;
        limbs[1] = 6217911673150459564u64;
        let num1 = U56x8 { limbs };
        let num2 = P448GoldilocksPrimeField::from_base_type(num1);
        assert_eq!(num2, U56x8::from("564a75b90ae34f8155d5821d7e9484"));
    }
}