1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
//! Lagoon is a thread pool crate that aims to address many of the problems with existing thread pool crates.
//!
//! ## Features
//!
//! - **Scoped jobs**: Safely spawn jobs that have access to their parent scope!
//! - **Job handles**: Receive the result of a job when it finishes, or wait on it to finish!
//! - **Global pool**: A pay-for-what-you-use global thread pool that avoids dependencies fighting over resources!
//! - **Customise thread attributes**: Specify thread name, stack size, etc.
//!
//! ```ignore
//! let pool = lagoon::ThreadPool::default();
//!
//! // Spawn some jobs that notify us when they're finished
//! let jobs = (0..10)
//!     .map(|i| pool.run_recv(move || {
//!         println!("Hello! i = {}", i);
//!     }))
//!     .collect::<Vec<_>>();
//!
//! // Wait for all jobs to finish
//! for job in jobs {
//!     job.join().unwrap();
//! }
//! ```

#![cfg_attr(docsrs, feature(doc_cfg))]
#![deny(missing_docs)]

#[cfg(feature = "scope")]
mod scope;
#[cfg(feature = "recv")]
mod recv;

#[cfg(feature = "scope")]
#[cfg_attr(docsrs, doc(cfg(feature = "scope")))]
pub use scope::Scope;
#[cfg(feature = "recv")]
#[cfg_attr(docsrs, doc(cfg(feature = "recv")))]
pub use recv::JobHandle;

use std::{
    thread::{self, JoinHandle},
    error,
    fmt,
    io,
};
// use flume::{Sender, unbounded};
use crossbeam_channel::{unbounded, Sender};

/// Attempt to determine the available concurrency of the host system.
///
/// In most cases, this corresponds to the number of CPU cores that are available to the program. If the `num_cpus`
/// feature is enabled (it is by default) the [`num_cpus`](https://crates.io/crates/num_cpus) crate will be used to
/// determine this value. Otherwise, the nightly-only `std::thread::available_concurrency` function will be used.
#[cfg(feature = "num_cpus")]
pub fn available_concurrency() -> Option<usize> {
    Some(num_cpus::get())
}

#[cfg(not(feature = "num_cpus"))]
pub fn available_concurrency() -> Option<usize> {
    std::thread::available_concurrency().map(|n| n.get())
}

/// An error that may be produced when creating a [`ThreadPool`].
#[derive(Debug)]
pub enum Error {
    /// An IO error occurred when attempting to spawn a thread.
    Io(io::Error),
    /// The thread pool has no threads.
    NoThreads,
    /// A timeout occurred when attempting to join a job.
    Timeout,
}

impl fmt::Display for Error {
    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
        match self {
            Self::Io(err) => write!(f, "{}", err),
            Self::NoThreads => write!(f, "thread pool has no threads"),
            Self::Timeout => write!(f, "a timeout occurred"),
        }
    }
}

impl error::Error for Error {}

struct Job {
    f: Box<dyn FnOnce() + Send>,
}

// TODO: Use when stable, see https://github.com/rust-lang/rust/issues/74465
//static GLOBAL: std::lazy::SyncLazy<ThreadPool> = std::lazy::SyncLazy::new(|| ThreadPool::default());

// I'll try spinning, that's a good trick! Actually, this isn't so bad: instead of spinning in a hot loop, we just
// yield to the scheduler every time we fail to access the global pool. This prevents priority inversion.
static GLOBAL: spin::once::Once<ThreadPool, spin::Yield> = spin::once::Once::new();

/// A pool of threads that may be used to execute jobs.
pub struct ThreadPool {
    tx: Sender<Job>,
    handles: Vec<JoinHandle<()>>,
}

impl Default for ThreadPool {
    fn default() -> Self { Self::build().finish().unwrap() }
}

impl ThreadPool {
    /// The default number of threads that will be used if the available concurrency of the environment cannot be
    /// determined automatically.
    pub const DEFAULT_THREAD_COUNT: usize = 8;

    /// Returns a reference to the global [`ThreadPool`], instantiating as with [`ThreadPool::default`] if it is not
    /// already initialized.
    ///
    /// This should be used when you don't require any specific thread pool configuration to avoid multiple thread
    /// pools fighting for scheduler time.
    pub fn global() -> &'static Self { Self::global_with_builder(ThreadPoolBuilder::default()) }

    /// Returns a reference to the global [`ThreadPool`], initializing it with the given [`ThreadPoolBuilder`] if it
    /// is not already initialized.
    ///
    /// Do *not* use this function if you are writing a library. Use [`ThreadPool::global`] instead so that the final
    /// binary crate is the one to determine the thread pool configuration (the end developer likely knows more about
    /// their specific threading requirements than you do and can use this information to optimise thread pool
    /// performance and minimise resource contention).
    ///
    /// If your application has specific pool requirements (for example, most games require thread pools to use N - 1
    /// threads to ensure that at least one core is free at any given time to keep the main thread running smoothly
    /// without stuttering) you should use this function *as early as possible* in the program's execution (i.e: at the
    /// top of the `main` function) to avoid dependencies initializing it first.
    ///
    /// Note additionally that the configuration you choose might interfere with dependencies that also use the global
    /// thread pool. Choose sensible, accomodating defaults where possible.
    pub fn global_with_builder(builder: ThreadPoolBuilder) -> &'static Self {
        GLOBAL.call_once(|| builder.finish().expect("Failed to initialise global thread pool"))
    }

    /// Begin building a new [`ThreadPool`].
    pub fn build() -> ThreadPoolBuilder {
        ThreadPoolBuilder::default()
    }

    /// Returns the number of threads in this pool.
    pub fn thread_count(&self) -> usize { self.handles.len() }

    /// Returns the number of jobs waiting to be executed.
    pub fn queue_len(&self) -> usize { self.tx.len() }

    /// Enqueue a function to be executed as a job when a thread is free to do so.
    ///
    /// ```
    /// let pool = lagoon::ThreadPool::default();
    ///
    /// for i in 0..10 {
    ///     pool.run(move || println!("I am the {}th job!", i));
    /// }
    /// ```
    pub fn run<F: FnOnce() + Send + 'static>(&self, f: F) {
        self.tx.send(Job { f: Box::new(f) }).unwrap()
    }

    /// Enqueue a function to be executed as a job when a thread is free to do so, returning a handle that allows
    /// retrieval of the return value of the function.
    #[cfg(feature = "recv")]
    pub fn run_recv<F: FnOnce() -> R + Send + 'static, R: Send + 'static>(&self, f: F) -> recv::JobHandle<R> {
        let (tx, rx) = oneshot::channel();
        self.run(move || { let _ = tx.send(f()); });
        recv::JobHandle::new(rx)
    }

    /// Signal to threads (not jobs) that they should stop, then wait for them to finish processing jobs.
    ///
    /// All outstanding jobs will be executed before this function returns.
    pub fn join_all(self) -> thread::Result<()> {
        let Self { tx, handles } = self;
        drop(tx);
        for handle in handles {
            handle.join()?;
        }
        Ok(())
    }

    /// Create a scope that allows the spawning of threads with safe access to the current scope.
    ///
    /// This function will wait for all jobs created in the scope to finish before continuing. See [`Scope`] for more
    /// information about scoped jobs.
    #[cfg(feature = "scope")]
    pub fn scoped<'pool, 'scope, F: FnOnce(scope::Scope<'pool, 'scope>) -> R, R>(&'pool self, f: F) -> R {
        scope::run(self, f)
    }
}

/// A type used to configure a [`ThreadPool`] prior to its creation.
#[derive(Clone, Default)]
pub struct ThreadPoolBuilder {
    thread_count: Option<usize>,
    thread_name: Option<String>,
    thread_stack_size: Option<usize>,
}

impl ThreadPoolBuilder {
    /// Configure the [`ThreadPool`] with the given number of threads. If unspecified, the thread pool will attempt to
    /// detect the number of hardware threads available to the process and use that. If this also fails,
    /// [`ThreadPool::DEFAULT_THREAD_COUNT`] will be used.
    pub fn with_thread_count(self, thread_count: usize) -> Self {
        Self { thread_count: Some(thread_count), ..self }
    }

    /// Give the threads owned by this [`ThreadPool`] the given name. If unspecified, the default name will be the same
    /// as those created by [`std::thread::spawn`].
    pub fn with_thread_name(self, name: String) -> Self {
        Self { thread_name: Some(name), ..self }
    }

    /// Give the threads owned by this [`ThreadPool`] a specific stack size. If unspecified, the default stack size
    /// will be the same as those created by [`std::thread::spawn`].
    pub fn with_thread_stack_size(self, size: usize) -> Self {
        Self { thread_stack_size: Some(size), ..self }
    }

    /// Finish configuration, returning a [`ThreadPool`].
    pub fn finish(self) -> Result<ThreadPool, Error> {
        let thread_count = self.thread_count
            .or_else(|| available_concurrency())
            .unwrap_or(ThreadPool::DEFAULT_THREAD_COUNT);

        if thread_count == 0 {
            return Err(Error::NoThreads);
        }

        let (tx, rx) = unbounded();

        Ok(ThreadPool {
            tx,
            handles: (0..thread_count)
                .map(|_| {
                    let rx = rx.clone();
                    let builder = thread::Builder::new();
                    let builder = match self.thread_name.clone() {
                        Some(name) => builder.name(name),
                        None => builder,
                    };
                    let builder = match self.thread_stack_size {
                        Some(size) => builder.stack_size(size),
                        None => builder,
                    };
                    builder.spawn(move || {
                        while let Ok(job) = rx.recv() {
                            let job = std::panic::AssertUnwindSafe(job);
                            let _ = std::panic::catch_unwind(move || {
                                (job.0.f)();
                            });
                        }
                    }).map_err(Error::Io)
                })
                .collect::<Result<_, _>>()?,
        })
    }
}