1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
// Copyright 2017 Adam Greig
// Licensed under the MIT license, see LICENSE for details.

//! This module provides the encoding function for turning data into codewords.
//!
//! Please refer to the `encode` and `copy_encode` methods on
//! [`LDPCCode`](../codes/enum.LDPCCode.html) for more details.

// We have a couple of expressions with +0 for clarity of where the 0 comes from
#![cfg_attr(feature="cargo-clippy", allow(identity_op))]

use core::slice;

use ::codes::LDPCCode;

/// Trait for the types of codeword we can encode into.
///
/// We implement this for u8 (the standard but slow option), and u32 and u64 which give speedups.
pub trait EncodeInto {
    /// Given `codeword` which has the first k bits set to the data to transmit,
    /// sets the remaining n-k parity bits.
    ///
    /// Returns a `&mut [u8]` view on `codeword`.
    fn encode<'a>(code: &LDPCCode, codeword: &'a mut[Self]) -> &'a mut [u8]
        where Self: Sized;

    /// First copies `data` into the first k bits of `codeword`, then calls `encode`.
    fn copy_encode<'a>(code: &LDPCCode, data: &[u8], codeword: &'a mut[Self]) -> &'a mut [u8]
        where Self: Sized;

    /// Returns the bit length for this type
    fn bitlength() -> usize;
}

impl EncodeInto for u8 {
    fn encode<'a>(code: &LDPCCode, codeword: &'a mut[Self]) -> &'a mut [u8] {
        let k = code.k();
        let r = code.n() - code.k();
        let b = code.circulant_size();
        let gc = code.compact_generator();
        let row_len = r/64;

        // Scope the split of codeword into (data, parity)
        {
            // Split codeword into data and parity sections and then zero the parity bits
            let (data, parity) = codeword.split_at_mut(k / 8);
            for x in parity.iter_mut() { *x = 0; }

            // For each rotation of the generator circulants
            for offset in 0..b {
                // For each row of circulants
                for crow in 0..k/b {
                    // Data bit (row of full generator matrix)
                    let bit = crow*b + offset;
                    if data[bit/8] >> (7-(bit%8)) & 1 == 1 {
                        // If bit is set, XOR the generator constant in
                        for (idx, circ) in gc[crow*row_len..(crow+1)*row_len].iter().enumerate() {
                            parity[idx*8 + 7] ^= (*circ >>  0) as u8;
                            parity[idx*8 + 6] ^= (*circ >>  8) as u8;
                            parity[idx*8 + 5] ^= (*circ >> 16) as u8;
                            parity[idx*8 + 4] ^= (*circ >> 24) as u8;
                            parity[idx*8 + 3] ^= (*circ >> 32) as u8;
                            parity[idx*8 + 2] ^= (*circ >> 40) as u8;
                            parity[idx*8 + 1] ^= (*circ >> 48) as u8;
                            parity[idx*8 + 0] ^= (*circ >> 56) as u8;
                        }
                    }
                }
                // Now simulate the right-rotation of the generator by left-rotating the parity
                for block in 0..r/b {
                    let parityblock = &mut parity[block*b/8 .. (block+1)*b/8];
                    let mut carry = parityblock[0] >> 7;
                    for x in parityblock.iter_mut().rev() {
                        let c = *x >> 7;
                        *x = (*x<<1) | carry;
                        carry = c;
                    }
                }
            }
        }

        // Return a &mut [u8] view on the codeword
        codeword
    }

    fn copy_encode<'a>(code: &LDPCCode, data: &[u8], codeword: &'a mut[Self]) -> &'a mut [u8] {
        codeword[..data.len()].copy_from_slice(data);
        Self::encode(code, codeword)
    }

    fn bitlength() -> usize { 8 }
}

impl EncodeInto for u32 {
    fn encode<'a>(code: &LDPCCode, codeword: &'a mut[Self]) -> &'a mut [u8] {
        let k = code.k();
        let r = code.n() - code.k();
        let b = code.circulant_size();
        let gc = code.compact_generator();
        let row_len = r/64;

        // Scope the split of codeword into (data, parity)
        {
            // Split codeword into data and parity sections and then zero the parity bits
            let (data, parity) = codeword.split_at_mut(k / 32);
            for x in parity.iter_mut() { *x = 0; }

            // We treat data as a &[u8] so we bit-index it correctly despite endianness
            let data = unsafe { slice::from_raw_parts(data.as_ptr() as *const u8, data.len()*4) };

            // For each rotation of the generator circulants
            for offset in 0..b {
                // For each row of circulants
                for crow in 0..k/b {
                    // Data bit (row of full generator matrix)
                    let bit = crow*b + offset;
                    if data[bit/8] >> (7-(bit%8)) & 1 == 1 {
                        // If bit is set, XOR the generator constant in
                        for (idx, circ) in gc[crow*row_len..(crow+1)*row_len].iter().enumerate() {
                            parity[idx*2 + 1] ^= (*circ >>  0) as u32;
                            parity[idx*2 + 0] ^= (*circ >> 32) as u32;
                        }
                    }
                }
                // Now simulate the right-rotation of the generator by left-rotating the parity
                if b >= 32 {
                    for block in 0..r/b {
                        let parityblock = &mut parity[block*b/32 .. (block+1)*b/32];
                        let mut carry = parityblock[0] >> 31;
                        for x in parityblock.iter_mut().rev() {
                            let c = *x >> 31;
                            *x = (*x<<1) | carry;
                            carry = c;
                        }
                    }
                } else if b == 16 {
                    // For small blocks we must rotate inside each parity word instead
                    for x in parity.iter_mut() {
                        let block1 = *x & 0xFFFF_0000;
                        let block2 = *x & 0x0000_FFFF;
                        *x =   (((block1<<1)|(block1>>15)) & 0xFFFF_0000)
                             | (((block2<<1)|(block2>>15)) & 0x0000_FFFF);
                    }
                }
            }

            // Need to compensate for endianness
            for x in parity.iter_mut() {
                *x = x.to_be();
            }
        }

        // Return a &mut [u8] view on the codeword
        unsafe {
            slice::from_raw_parts_mut::<'a>(codeword.as_mut_ptr() as *mut u8, codeword.len() * 4)
        }
    }

    fn copy_encode<'a>(code: &LDPCCode, data: &[u8], codeword: &'a mut[Self]) -> &'a mut [u8] {
        let codeword_u8 = unsafe {
            slice::from_raw_parts_mut::<'a>(codeword.as_mut_ptr() as *mut u8, codeword.len() * 4)
        };
        codeword_u8[..data.len()].copy_from_slice(data);
        Self::encode(code, codeword)
    }

    fn bitlength() -> usize { 32 }
}

impl EncodeInto for u64 {
    fn encode<'a>(code: &LDPCCode, codeword: &'a mut[Self]) -> &'a mut [u8] {
        let k = code.k();
        let r = code.n() - code.k();
        let b = code.circulant_size();
        let gc = code.compact_generator();
        let row_len = r/64;

        // Scope the split of codeword into (data, parity)
        {
            // Split codeword into data and parity sections and then zero the parity bits
            let (data, parity) = codeword.split_at_mut(k / 64);
            for x in parity.iter_mut() { *x = 0; }

            // We treat data as a &[u8] so we bit-index it correctly despite endianness
            let data = unsafe { slice::from_raw_parts(data.as_ptr() as *const u8, data.len()*8) };

            // For each rotation of the generator circulants
            for offset in 0..b {
                // For each row of circulants
                for crow in 0..k/b {
                    // Data bit (row of full generator matrix)
                    let bit = crow*b + offset;
                    if data[bit/8] >> (7-(bit%8)) & 1 == 1 {
                        // If bit is set, XOR the generator constant in
                        for (idx, circ) in gc[crow*row_len..(crow+1)*row_len].iter().enumerate() {
                            parity[idx] ^= *circ;
                        }
                    }
                }
                // Now simulate the right-rotation of the generator by left-rotating the parity
                if b >= 64 {
                    for block in 0..r/b {
                        let parityblock = &mut parity[block*b/64 .. (block+1)*b/64];
                        let mut carry = parityblock[0] >> 63;
                        for x in parityblock.iter_mut().rev() {
                            let c = *x >> 63;
                            *x = (*x<<1) | carry;
                            carry = c;
                        }
                    }
                } else if b == 32 {
                    // For small blocks we must rotate inside each parity word instead
                    for x in parity.iter_mut() {
                        let block1 = *x & 0xFFFFFFFF_00000000;
                        let block2 = *x & 0x00000000_FFFFFFFF;
                        *x =   (((block1<<1)|(block1>>31)) & 0xFFFFFFFF_00000000)
                             | (((block2<<1)|(block2>>31)) & 0x00000000_FFFFFFFF);
                    }
                } else if b == 16 {
                    for x in parity.iter_mut() {
                        let block1 = *x & 0xFFFF_0000_0000_0000;
                        let block2 = *x & 0x0000_FFFF_0000_0000;
                        let block3 = *x & 0x0000_0000_FFFF_0000;
                        let block4 = *x & 0x0000_0000_0000_FFFF;
                        *x =   (((block1<<1)|(block1>>15)) & 0xFFFF_0000_0000_0000)
                             | (((block2<<1)|(block2>>15)) & 0x0000_FFFF_0000_0000)
                             | (((block3<<1)|(block3>>15)) & 0x0000_0000_FFFF_0000)
                             | (((block4<<1)|(block4>>15)) & 0x0000_0000_0000_FFFF);
                    }
                }
            }

            // Need to compensate for endianness
            for x in parity.iter_mut() {
                *x = x.to_be();
            }
        }

        // Return a &mut [u8] view on the codeword
        unsafe {
            slice::from_raw_parts_mut::<'a>(codeword.as_mut_ptr() as *mut u8, codeword.len() * 8)
        }
    }

    fn copy_encode<'a>(code: &LDPCCode, data: &[u8], codeword: &'a mut[Self]) -> &'a mut [u8] {
        let codeword_u8 = unsafe {
            slice::from_raw_parts_mut::<'a>(codeword.as_mut_ptr() as *mut u8, codeword.len() * 8)
        };
        codeword_u8[..data.len()].copy_from_slice(data);
        Self::encode(code, codeword)
    }

    fn bitlength() -> usize { 64 }
}

impl LDPCCode {

    /// Encode a codeword. This function assumes the first k bits of `codeword` have already
    /// been set to your data, and will set the remaining n-k bits appropriately.
    ///
    /// `codeword` must be exactly n bits long.
    ///
    /// You can give `codeword` in `u8`, `u32`, or `u64`.
    /// The larger types are faster and are interpreted as packed bytes in little endian.
    ///
    /// Returns a view of `codeword` in &mut [u8] which may be convenient if you
    /// passed in a larger type but want to use the output as bytes. You can just
    /// not use the return value if you wish to keep your original view on `codeword`.
    pub fn encode<'a, T>(&self, codeword: &'a mut [T]) -> &'a mut [u8]
        where T: EncodeInto
    {
        assert_eq!(codeword.len() * T::bitlength(), self.n(), "codeword must be n bits long");
        EncodeInto::encode(self, codeword)
    }

    /// Encode a codeword, first copying in the data.
    ///
    /// This is the same as `encode` except you can pass the data which must be k bits long in as
    /// `&[u8]` and it will be copied into the first part of `codeword`, which must be n bits long.
    ///
    /// Returns a view of `codeword` in &mut [u8] which may be convenient if you
    /// passed in a larger type but want to use the output as bytes. You can just
    /// not use the return value if you wish to keep your original view on `codeword`.
    pub fn copy_encode<'a, T>(&self, data: &[u8], codeword: &'a mut [T]) -> &'a mut [u8]
        where T: EncodeInto
    {
        assert_eq!(data.len() * 8, self.k(), "data must be k bits long");
        assert_eq!(codeword.len() * T::bitlength(), self.n(), "codeword must be n bits long");
        EncodeInto::copy_encode(self, data, codeword)
    }
}

#[cfg(test)]
mod tests {
    use std::prelude::v1::*;

    use ::codes::LDPCCode;

    macro_rules! test_encode {
        ($code:path, $parity:expr) => {
            let code = $code;
            let parity = $parity;
            let txdata: Vec<u8> = (0..code.k()/8).map(|i| i as u8).collect();

            // First check we can encode OK in the totally normal way
            let mut txcode = vec![0u8; code.n()/8];
            txcode[..code.k()/8].copy_from_slice(&txdata);
            let rxcode = code.encode(&mut txcode);
            let (rxdata, rxparity) = rxcode.split_at(code.k()/8);
            assert_eq!(rxdata, &txdata[..]);
            assert_eq!(rxparity, &parity[..]);

            // Now check copy_encode works
            let mut txcode = vec![0u8; code.n()/8];
            let rxcode = code.copy_encode(&txdata, &mut txcode);
            let (rxdata, rxparity) = rxcode.split_at(code.k()/8);
            assert_eq!(rxdata, &txdata[..]);
            assert_eq!(rxparity, &parity[..]);

            // Now check for u32 version
            let mut txcode = vec![0u32; code.n()/32];
            let rxcode = code.copy_encode(&txdata, &mut txcode);
            let (rxdata, rxparity) = rxcode.split_at(code.k()/8);
            assert_eq!(rxdata, &txdata[..]);
            assert_eq!(rxparity, &parity[..]);

            // Now check for u64 version
            let mut txcode = vec![0u64; code.n()/64];
            let rxcode = code.copy_encode(&txdata, &mut txcode);
            let (rxdata, rxparity) = rxcode.split_at(code.k()/8);
            assert_eq!(rxdata, &txdata[..]);
            assert_eq!(rxparity, &parity[..]);
        };
    }

    #[test]
    fn test_encode() {
        test_encode!(LDPCCode::TC128,
                     [0x34, 0x99, 0x98, 0x87, 0x94, 0xE1, 0x62, 0x56]);

        test_encode!(LDPCCode::TC256,
                     [0x8C, 0x99, 0x21, 0x34, 0xAD, 0xB0, 0xCF, 0xD2,
                      0x2D, 0xA5, 0xF7, 0x7F, 0xBB, 0x42, 0x34, 0xCD]);

        test_encode!(LDPCCode::TC512,
                     [0xBC, 0x92, 0x1C, 0x98, 0xCC, 0xE2, 0x6C, 0xE8,
                      0x12, 0x3A, 0x97, 0xFF, 0x73, 0x5B, 0xF6, 0x9E,
                      0x08, 0xCB, 0x48, 0xC4, 0xC3, 0x00, 0x83, 0x0F,
                      0x30, 0xE0, 0x98, 0x59, 0xD6, 0x06, 0x7E, 0xBF]);

        test_encode!(LDPCCode::TM1280,
                     [0xF1, 0x68, 0xE0, 0x79, 0x45, 0xE3, 0x08, 0xAE,
                      0xEF, 0xD1, 0x68, 0x56, 0x60, 0x0A, 0x90, 0xFA,
                      0xF6, 0x55, 0xA2, 0x01, 0x60, 0x77, 0xF7, 0xE0,
                      0xFA, 0xB5, 0x49, 0x06, 0xDD, 0x6D, 0xCD, 0x7D]);

        test_encode!(LDPCCode::TM1536,
                     [0x99, 0x4D, 0x02, 0x17, 0x53, 0x87, 0xC8, 0xDD,
                      0x42, 0x2E, 0x46, 0x29, 0x06, 0x6A, 0x02, 0x6D,
                      0xE1, 0xAB, 0xB9, 0xA2, 0xAA, 0xE0, 0xF2, 0xE9,
                      0xF6, 0xAA, 0xE6, 0xF0, 0x42, 0x1E, 0x52, 0x44,
                      0x5F, 0x62, 0xD1, 0xA8, 0x8F, 0xB2, 0x01, 0x78,
                      0xB1, 0xD6, 0x2D, 0x0B, 0xD6, 0xB1, 0x4A, 0x6C,
                      0x93, 0x26, 0x69, 0xAA, 0xE0, 0x55, 0x1A, 0xD9,
                      0x9B, 0x94, 0x35, 0x27, 0x3F, 0x30, 0x91, 0x83]);

        test_encode!(LDPCCode::TM2048,
                     [0xEE, 0xA9, 0xAA, 0xAF, 0x98, 0xD9, 0x16, 0xCE,
                      0x6C, 0x2B, 0x28, 0x2D, 0x1A, 0x5B, 0x94, 0x4C,
                      0xA4, 0xF1, 0xB3, 0xD3, 0x1A, 0xEC, 0x58, 0x5A,
                      0xB3, 0xE6, 0xA4, 0xC4, 0x0D, 0xFB, 0x4F, 0x4D,
                      0xD8, 0x07, 0xA1, 0xAD, 0x0A, 0xE9, 0x62, 0xC4,
                      0xD4, 0x0B, 0xAD, 0xA1, 0x06, 0xE5, 0x6E, 0xC8,
                      0xA6, 0x68, 0x6A, 0xD5, 0xE6, 0xAC, 0x09, 0xBE,
                      0x3F, 0xF1, 0xF3, 0x4C, 0x7F, 0x35, 0x90, 0x27,
                      0xF2, 0x64, 0x69, 0x03, 0x83, 0x37, 0x42, 0x91,
                      0x21, 0xB7, 0xBA, 0xD0, 0x50, 0xE4, 0x91, 0x42,
                      0xE4, 0x0D, 0x64, 0x19, 0x70, 0x84, 0xA5, 0xB7,
                      0x86, 0x6F, 0x06, 0x7B, 0x12, 0xE6, 0xC7, 0xD5,
                      0xAB, 0x10, 0xDB, 0x03, 0x4F, 0xF6, 0x8A, 0xFE,
                      0x17, 0xAC, 0x67, 0xBF, 0xF3, 0x4A, 0x36, 0x42,
                      0x04, 0xAE, 0x85, 0xB3, 0xB6, 0x47, 0xCE, 0xC4,
                      0x0F, 0xA5, 0x8E, 0xB8, 0xBD, 0x4C, 0xC5, 0xCF]);

        test_encode!(LDPCCode::TM5120,
                     [0x4A, 0xA9, 0xB6, 0x89, 0x47, 0xB9, 0xAA, 0x41,
                      0x0E, 0xED, 0xF2, 0xCD, 0x03, 0xFD, 0xEE, 0x05,
                      0x40, 0xD1, 0x74, 0x9E, 0xD5, 0x99, 0x69, 0x47,
                      0x2C, 0xBD, 0x18, 0xF2, 0xB9, 0xF5, 0x05, 0x2B,
                      0x35, 0x4B, 0xB6, 0x02, 0x30, 0xBE, 0xE2, 0x24,
                      0x3A, 0x44, 0xB9, 0x0D, 0x3F, 0xB1, 0xED, 0x2B,
                      0x93, 0xF7, 0xE3, 0x6C, 0x0A, 0x66, 0xF8, 0x2D,
                      0xB4, 0xD0, 0xC4, 0x4B, 0x2D, 0x41, 0xDF, 0x0A,
                      0xAC, 0xCB, 0xF4, 0xD7, 0xC8, 0x0E, 0x3A, 0x9A,
                      0xBF, 0xD8, 0xE7, 0xC4, 0xDB, 0x1D, 0x29, 0x89,
                      0x4A, 0x65, 0xEB, 0x61, 0xE2, 0x2F, 0xC0, 0x33,
                      0x22, 0x0D, 0x83, 0x09, 0x8A, 0x47, 0xA8, 0x5B,
                      0xE7, 0x0F, 0xFA, 0xC7, 0x12, 0x35, 0x24, 0xEF,
                      0x4F, 0xA7, 0x52, 0x6F, 0xBA, 0x9D, 0x8C, 0x47,
                      0x31, 0xB1, 0x14, 0x3F, 0xB1, 0x14, 0x7F, 0x5D,
                      0x95, 0x15, 0xB0, 0x9B, 0x15, 0xB0, 0xDB, 0xF9]);

        test_encode!(LDPCCode::TM6144,
                     [0xA7, 0x42, 0xB8, 0x6D, 0x95, 0x7B, 0x9C, 0x90,
                      0xA8, 0x18, 0x30, 0xC2, 0x95, 0x08, 0x7F, 0xD7,
                      0xAB, 0x4E, 0xB4, 0x61, 0x99, 0x77, 0x90, 0x9C,
                      0xA4, 0x14, 0x3C, 0xCE, 0x99, 0x04, 0x73, 0xDB,
                      0x04, 0x59, 0xF4, 0xC0, 0xAD, 0x9F, 0xBA, 0x49,
                      0x1E, 0x53, 0x0A, 0x05, 0x5A, 0x9D, 0x1F, 0xDF,
                      0x67, 0x3A, 0x97, 0xA3, 0xCE, 0xFC, 0xD9, 0x2A,
                      0x7D, 0x30, 0x69, 0x66, 0x39, 0xFE, 0x7C, 0xBC,
                      0x70, 0x17, 0x15, 0x08, 0x56, 0xBD, 0x0B, 0xAC,
                      0x89, 0x12, 0x85, 0xB0, 0xF0, 0x88, 0x7F, 0x07,
                      0x1F, 0x78, 0x7A, 0x67, 0x39, 0xD2, 0x64, 0xC3,
                      0xE6, 0x7D, 0xEA, 0xDF, 0x9F, 0xE7, 0x10, 0x68,
                      0x17, 0x89, 0x95, 0x5C, 0x41, 0x92, 0x42, 0x05,
                      0xBD, 0x62, 0x80, 0x2B, 0x67, 0x59, 0xB2, 0xEB,
                      0x17, 0x89, 0x95, 0x5C, 0x41, 0x92, 0x42, 0x05,
                      0xBD, 0x62, 0x80, 0x2B, 0x67, 0x59, 0xB2, 0xEB,
                      0x3B, 0x15, 0xFB, 0xBE, 0xF2, 0x9B, 0xCE, 0x22,
                      0x77, 0xDC, 0xEB, 0x28, 0x03, 0xA7, 0x83, 0xAD,
                      0x7D, 0x53, 0xBD, 0xF8, 0xB4, 0xDD, 0x88, 0x64,
                      0x31, 0x9A, 0xAD, 0x6E, 0x45, 0xE1, 0xC5, 0xEB,
                      0x92, 0x3E, 0xBA, 0x63, 0x0F, 0x0F, 0x74, 0x3B,
                      0x96, 0x7F, 0x2F, 0xA5, 0x09, 0x43, 0xD0, 0xA6,
                      0x9C, 0x30, 0xB4, 0x6D, 0x01, 0x01, 0x7A, 0x35,
                      0x98, 0x71, 0x21, 0xAB, 0x07, 0x4D, 0xDE, 0xA8,
                      0xD0, 0xC9, 0x86, 0x0D, 0x68, 0xA3, 0xDA, 0x41,
                      0x50, 0xCF, 0x10, 0x6A, 0xA9, 0x24, 0xD0, 0x06,
                      0x12, 0x0B, 0x44, 0xCF, 0xAA, 0x61, 0x18, 0x83,
                      0x92, 0x0D, 0xD2, 0xA8, 0x6B, 0xE6, 0x12, 0xC4,
                      0x1B, 0x75, 0x76, 0xF7, 0xC3, 0xAF, 0x84, 0xE2,
                      0x16, 0xA6, 0xE4, 0x44, 0x06, 0x4F, 0x54, 0x98,
                      0xDC, 0xB2, 0xB1, 0x30, 0x04, 0x68, 0x43, 0x25,
                      0xD1, 0x61, 0x23, 0x83, 0xC1, 0x88, 0x93, 0x5F]);

        test_encode!(LDPCCode::TM8192,
                     [0xF6, 0x00, 0x56, 0xCD, 0x23, 0x63, 0x1A, 0xED,
                      0x7D, 0x7C, 0xF0, 0x17, 0x7C, 0xF1, 0x96, 0x73,
                      0x8C, 0xB7, 0xE0, 0xF4, 0x34, 0xF6, 0xB7, 0x3C,
                      0x89, 0x44, 0x85, 0x74, 0xA3, 0x27, 0x44, 0xF7,
                      0x0A, 0xFC, 0xAA, 0x31, 0xDF, 0x9F, 0xE6, 0x11,
                      0x81, 0x80, 0x0C, 0xEB, 0x80, 0x0D, 0x6A, 0x8F,
                      0x70, 0x4B, 0x1C, 0x08, 0xC8, 0x0A, 0x4B, 0xC0,
                      0x75, 0xB8, 0x79, 0x88, 0x5F, 0xDB, 0xB8, 0x0B,
                      0x5E, 0x53, 0x18, 0x0C, 0xB4, 0x32, 0x45, 0x92,
                      0x71, 0x93, 0xFE, 0xAD, 0xDF, 0x98, 0x55, 0xE8,
                      0x62, 0xB5, 0xFB, 0xBB, 0x4D, 0x94, 0x01, 0x2D,
                      0x22, 0xAD, 0x21, 0x55, 0x44, 0xED, 0x44, 0xC2,
                      0x61, 0x6C, 0x27, 0x33, 0x8B, 0x0D, 0x7A, 0xAD,
                      0x4E, 0xAC, 0xC1, 0x92, 0xE0, 0xA7, 0x6A, 0xD7,
                      0x5D, 0x8A, 0xC4, 0x84, 0x72, 0xAB, 0x3E, 0x12,
                      0x1D, 0x92, 0x1E, 0x6A, 0x7B, 0xD2, 0x7B, 0xFD,
                      0x59, 0x80, 0xA5, 0x02, 0xF2, 0xDD, 0x10, 0xCD,
                      0x8B, 0x8F, 0x52, 0xC3, 0x00, 0x65, 0xAD, 0xF7,
                      0xFB, 0xDF, 0x35, 0xB9, 0xCB, 0xB1, 0x90, 0x75,
                      0x68, 0xFC, 0x36, 0x33, 0x9D, 0x79, 0x18, 0xD0,
                      0x3A, 0xE3, 0xC6, 0x61, 0x91, 0xBE, 0x73, 0xAE,
                      0xE8, 0xEC, 0x31, 0xA0, 0x63, 0x06, 0xCE, 0x94,
                      0x98, 0xBC, 0x56, 0xDA, 0xA8, 0xD2, 0xF3, 0x16,
                      0x0B, 0x9F, 0x55, 0x50, 0xFE, 0x1A, 0x7B, 0xB3,
                      0x2D, 0xF0, 0xEA, 0x30, 0x5C, 0x71, 0xE6, 0xD8,
                      0x21, 0xE7, 0xC4, 0x1F, 0x68, 0xA5, 0x95, 0xAC,
                      0x3B, 0x2F, 0x62, 0xBC, 0x72, 0xF3, 0x2F, 0x9C,
                      0xB5, 0x0F, 0x9A, 0x27, 0x42, 0x5B, 0x0B, 0x49,
                      0x50, 0x8D, 0x97, 0x4D, 0x21, 0x0C, 0x9B, 0xA5,
                      0x5C, 0x9A, 0xB9, 0x62, 0x15, 0xD8, 0xE8, 0xD1,
                      0x46, 0x52, 0x1F, 0xC1, 0x0F, 0x8E, 0x52, 0xE1,
                      0xC8, 0x72, 0xE7, 0x5A, 0x3F, 0x26, 0x76, 0x34,
                      0x2C, 0xFB, 0x43, 0xA9, 0xBD, 0x5C, 0x53, 0x87,
                      0xD3, 0xF9, 0x40, 0x32, 0xED, 0x43, 0x7F, 0x96,
                      0x85, 0xAD, 0xC9, 0x0F, 0xE4, 0x5E, 0x11, 0xFA,
                      0xAF, 0x32, 0xBC, 0xD2, 0xC4, 0x2B, 0xC6, 0xE6,
                      0x65, 0xB2, 0x0A, 0xE0, 0xF4, 0x15, 0x1A, 0xCE,
                      0x9A, 0xB0, 0x09, 0x7B, 0xA4, 0x0A, 0x36, 0xDF,
                      0xCC, 0xE4, 0x80, 0x46, 0xAD, 0x17, 0x58, 0xB3,
                      0xE6, 0x7B, 0xF5, 0x9B, 0x8D, 0x62, 0x8F, 0xAF,
                      0x35, 0x97, 0x39, 0x80, 0xDC, 0x57, 0x52, 0xD1,
                      0xDB, 0x00, 0x55, 0x0B, 0x5E, 0x8E, 0x5C, 0xB6,
                      0x15, 0xB4, 0xF8, 0x9F, 0xAB, 0xF6, 0xCD, 0x60,
                      0xD0, 0xE1, 0x13, 0x02, 0x1B, 0x61, 0x87, 0x73,
                      0x9E, 0x3C, 0x92, 0x2B, 0x77, 0xFC, 0xF9, 0x7A,
                      0x70, 0xAB, 0xFE, 0xA0, 0xF5, 0x25, 0xF7, 0x1D,
                      0xBE, 0x1F, 0x53, 0x34, 0x00, 0x5D, 0x66, 0xCB,
                      0x7B, 0x4A, 0xB8, 0xA9, 0xB0, 0xCA, 0x2C, 0xD8,
                      0x31, 0xAD, 0x0C, 0x43, 0xE1, 0xE1, 0x81, 0x9F,
                      0xA3, 0x69, 0x90, 0x4C, 0xE6, 0x1F, 0x41, 0x61,
                      0xFB, 0x82, 0xD7, 0x97, 0x29, 0xC3, 0x30, 0x15,
                      0xA2, 0x72, 0xE7, 0x88, 0x85, 0xAD, 0x0F, 0x98,
                      0x9A, 0x06, 0xA7, 0xE8, 0x4A, 0x4A, 0x2A, 0x34,
                      0x08, 0xC2, 0x3B, 0xE7, 0x4D, 0xB4, 0xEA, 0xCA,
                      0x50, 0x29, 0x7C, 0x3C, 0x82, 0x68, 0x9B, 0xBE,
                      0x09, 0xD9, 0x4C, 0x23, 0x2E, 0x06, 0xA4, 0x33,
                      0xED, 0xA5, 0x15, 0xF4, 0x69, 0x70, 0x0B, 0xFF,
                      0x35, 0x9C, 0x94, 0x0B, 0x2E, 0xB3, 0x47, 0xCD,
                      0xEB, 0xC4, 0x3F, 0xF5, 0x82, 0x98, 0xCD, 0x72,
                      0x78, 0xF9, 0xEA, 0x4F, 0xF7, 0x49, 0x4B, 0xC3,
                      0x5E, 0x16, 0xA6, 0x47, 0xDA, 0xC3, 0xB8, 0x4C,
                      0x86, 0x2F, 0x27, 0xB8, 0x9D, 0x00, 0xF4, 0x7E,
                      0x58, 0x77, 0x8C, 0x46, 0x31, 0x2B, 0x7E, 0xC1,
                      0xCB, 0x4A, 0x59, 0xFC, 0x44, 0xFA, 0xF8, 0x70]);
    }
}