1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
// Copyright 2017 Adam Greig
// Licensed under the MIT license, see LICENSE for details.

//! This module provides decoding functions for turning codewords into data.
//!
//! Please refer to the `decode_ms` and `decode_bf` methods on
//! [`LDPCCode`](../codes/enum.LDPCCode.html) for more details.

use core::i8;
use core::i16;
use core::i32;
use core::f32;
use core::f64;

use core::ops::{Add,AddAssign,Neg,Sub};

use ::codes::LDPCCode;

// Ugh gross yuck.
//
// No `f32::abs()` available with `no_std`, and it's not worth bringing in some
// dependency just to get it. This is however used right in the hottest decoder
// loop and it's so much faster than the obvious `if f < 0 { -f } else { f }`.
fn fabs(f: f64) -> f64 {
    unsafe {
        let x: u64 = *((&f as *const f64) as *const u64) & 0x7FFFFFFFFFFFFFFF;
        *((&x as *const u64) as *const f64)
    }
}
fn fabsf(f: f32) -> f32 {
    unsafe {
        let x: u32 = *((&f as *const f32) as *const u32) & 0x7FFFFFFF;
        *((&x as *const u32) as *const f32)
    }
}

/// Trait for types that the min-sum decoder can operate with.
///
/// Implemented for `i8`, `i16`, `i32`, `f32`, and `f64`.
pub trait DecodeFrom:
    Sized + Clone + Copy + PartialEq + PartialOrd
    + Add + AddAssign + Neg<Output=Self> + Sub<Output=Self>
{
    /// 1 in T
    fn one()            -> Self;
    /// 0 in T
    fn zero()           -> Self;
    /// Maximum value T can represent
    fn maxval()         -> Self;
    /// Absolute value of self
    fn abs(&self)       -> Self;
    /// Saturating add
    fn saturating_add(&self, other: Self) -> Self;
}

impl DecodeFrom for i8 {
    #[inline] fn one()      -> i8 { 1 }
    #[inline] fn zero()     -> i8 { 0 }
    #[inline] fn maxval()   -> i8 { i8::MAX }
    #[inline] fn abs(&self) -> i8 { i8::abs(*self) }
    #[inline] fn saturating_add(&self, other: Self) -> Self { i8::saturating_add(*self, other) }
}
impl DecodeFrom for i16 {
    #[inline] fn one()      -> i16 { 1 }
    #[inline] fn zero()     -> i16 { 0 }
    #[inline] fn maxval()   -> i16 { i16::MAX }
    #[inline] fn abs(&self) -> i16 { i16::abs(*self) }
    #[inline] fn saturating_add(&self, other: Self) -> Self { i16::saturating_add(*self, other) }
}
impl DecodeFrom for i32 {
    #[inline] fn one()      -> i32 { 1 }
    #[inline] fn zero()     -> i32 { 0 }
    #[inline] fn maxval()   -> i32 { i32::MAX }
    #[inline] fn abs(&self) -> i32 { i32::abs(*self) }
    #[inline] fn saturating_add(&self, other: Self) -> Self { i32::saturating_add(*self, other) }
}
impl DecodeFrom for f32 {
    #[inline] fn one()      -> f32 { 1.0 }
    #[inline] fn zero()     -> f32 { 0.0 }
    #[inline] fn maxval()   -> f32 { f32::MAX }
    #[inline] fn abs(&self) -> f32 { fabsf(*self) }
    #[inline] fn saturating_add(&self, other: Self) -> Self { *self + other }
}
impl DecodeFrom for f64 {
    #[inline] fn one()      -> f64 { 1.0 }
    #[inline] fn zero()     -> f64 { 0.0 }
    #[inline] fn maxval()   -> f64 { f64::MAX }
    #[inline] fn abs(&self) -> f64 { fabs(*self) }
    #[inline] fn saturating_add(&self, other: Self) -> Self { *self + other }
}

impl LDPCCode {

    /// Get the length of [u8] required for the working area of `decode_bf`.
    ///
    /// Equal to n + punctured_bits.
    pub fn decode_bf_working_len(&self) -> usize {
        self.n() + self.punctured_bits()
    }

    /// Get the length of [T] required for the working area of `decode_ms`.
    ///
    /// Equal to 2 * paritycheck_sum + 3*n + 3*punctured_bits - 2*k.
    pub fn decode_ms_working_len(&self) -> usize {
        (2 * self.paritycheck_sum() as usize + 3*self.n() + 3*self.punctured_bits() - 2*self.k())
    }

    /// Get the length of [u8] required for the working_u8 area of `decode_ms`.
    ///
    /// Equal to (n + punctured_bits - k)/8.
    pub fn decode_ms_working_u8_len(&self) -> usize {
        (self.n() + self.punctured_bits() - self.k()) / 8
    }

    /// Get the length of [u8] required for the output of any decoder.
    ///
    /// Equal to (n+punctured_bits)/8.
    pub fn output_len(&self) -> usize {
        (self.n() + self.punctured_bits()) / 8
    }

    /// Hard erasure decoding algorithm.
    ///
    /// Used to preprocess punctured codes before attempting bit-flipping decoding,
    /// as the bit-flipping algorithm cannot handle erasures.
    ///
    /// The algorithm is:
    ///     * We compute the parity of each check over all non-erased bits
    ///     * We count how many erased bits are connected to each check (0, 1, or "more than 1")
    ///     * Then each parity check with exactly one erased variable casts a vote for
    ///       that variable, +1 if check parity is 1, otherwise -1
    ///     * Each variable that receives a majority vote (i.e. not equal 0) is set to that
    ///       vote and marked decoded
    ///     * Iterate until all variables are decoded or we reach the iteration limit
    ///
    /// This is based on the paper:
    /// Novel multi-Gbps bit-flipping decoders for punctured LDPC codes,
    /// by Archonta, Kanistras, and Paliouras, MOCAST 2016.
    ///
    /// * `codeword` must be (n+p)/8 long (`self.output_len()`), with the first n/8 bytes already
    ///   set to the received hard information, and the punctured bits at the end will be updated.
    /// * `working` must be (n+p) bytes long (`self.decode_bf_working_len()`).
    ///
    /// Returns `(success, number of iterations run)`. Success only indicates that every punctured
    /// bit got a majority vote; but they might still be wrong; likewise failure means not every
    /// bit got a vote but many may still have been determined correctly.
    fn decode_erasures(&self, codeword: &mut [u8], working: &mut [u8], maxiters: usize)
        -> (bool, usize)
    {
        assert_eq!(codeword.len(), self.output_len());
        assert_eq!(working.len(), self.decode_bf_working_len());

        let n = self.n();
        let p = self.punctured_bits();

        // Working area:
        // * The top bit 0x80 for byte 'i' is the parity bit for check 'i'.
        // * The second and third top bits 0x60 for byte 'i' indicate the number of erased
        //   variables connected to check 'i':
        //   00 for no erasures, 01 for a single erasure, 11 for more than one erasure
        // * The fourth top bit 0x10 for byte 'a' indicates whether variable 'a' is erased
        // * The lowest four bits 0x0F for byte 'a' indicate the votes received for variable 'a',
        //   starting at 8 for 0 votes and being incremented and decremented from there.

        // Initialse working area: mark all punctured bits as erased
        for w in &mut working[..n] { *w = 0x00 }
        for w in &mut working[n..] { *w = 0x10 }

        // Also write all the punctured bits in the codeword to zero
        for c in &mut codeword[n/8..] { *c = 0x00 }

        // Keep track of how many bits we've fixed
        let mut bits_fixed = 0;

        for iter in 0..maxiters {
            // Initialise parity and erasure counts to zero, reset votes, preserve erasure bit
            for w in &mut working[..] { *w = (*w & 0x10) | 0x08 }

            // Compute check parity and erasure count
            for (check, var) in self.iter_paritychecks() {
                if working[var] & 0x10 == 0x10 {
                    // If var is erased, update check erasure count
                    match working[check] & 0x60 {
                        0x00 => working[check] |= 0x20,
                        0x20 => working[check] |= 0x40,
                        _    => (),
                    }
                } else if codeword[var/8] >> (7-(var%8)) & 1 == 1 {
                    // If var is not erased and this codeword bit is set, update check parity
                    working[check] ^= 0x80;
                }
            }

            // Now accumulate votes for each erased variable
            for (check, var) in self.iter_paritychecks() {
                // If this variable is erased and this check has only one vote
                if working[var] & 0x10 == 0x10 && working[check] & 0x60 == 0x20 {
                    // Vote +1 if our parity is currently 1, -1 otherwise
                    if working[check] & 0x80 == 0x80 {
                        working[var] += 1;
                    } else {
                        working[var] -= 1;
                    }
                }
            }

            // Finally fix all bits that are erased and have a majority vote
            for (var, working) in working[0..(n+p)].iter_mut().enumerate() {
                if *working & 0x10 == 0x10 {
                    if *working & 0x0F > 0x08 {
                        codeword[var/8] |= 1<<(7-(var%8));
                        *working &= !0x10;
                    }
                    bits_fixed += 1;
                }
            }

            if bits_fixed == p {
                // Hurray we're done
                return (true, iter)
            }
        }

        // If we finished the iteration loop then we did not succeed.
        (false, maxiters)
    }

    /// Bit flipping decoder.
    ///
    /// This algorithm is quick but only operates on hard information and consequently leaves a
    /// lot of error-correcting capability behind. It is around 1-2dB worse than the min-sum
    /// decoder. However, it requires much less memory and is a lot quicker.
    ///
    /// Requires:
    ///
    /// * `input` must be `n/8` long, where each bit is the received hard information
    /// * `output` must be `(n+punctured_bits)/8` (=`self.output_len()`) bytes long and is written
    ///   with the decoded codeword, so the user data is present in the first `k/8` bytes.
    /// * `working` must be `n+punctured_bits` (=`self.decode_bf_working_len()`) bytes long.
    ///
    /// Runs for at most `maxiters` iterations, both when attempting to fix punctured erasures on
    /// applicable codes, and in the main bit flipping decoder.
    ///
    /// Returns `(decoding success, iters)`. For punctured codes, `iters` includes iterations
    /// of the erasure decoding algorithm which is run first.
    pub fn decode_bf(&self, input: &[u8], output: &mut [u8],
                     working: &mut [u8], maxiters: usize)
        -> (bool, usize)
    {
        assert_eq!(input.len(), self.n()/8, "input.len() != n/8");
        assert_eq!(output.len(), self.output_len(), "output.len != (n+p)/8");
        assert_eq!(working.len(), self.decode_bf_working_len(), "working.len() incorrect");

        output[..self.n()/8].copy_from_slice(input);

        // For punctured codes we must first try and fix all the punctured bits.
        // We run them through an erasure decoding algorithm and record how many iterations
        // it took (so we can return the total).
        let erasure_iters = if self.punctured_bits() > 0 {
            let (_, iters) = self.decode_erasures(output, working, maxiters);
            iters
        } else { 0 };

        // Working area: we use the top bit of the first k bytes to store that parity check,
        // and the remaining 7 bits of the first n+p bytes to store violation count for that var.

        for iter in 0..maxiters {
            // Zero out violation counts
            for v in &mut working[..] { *v = 0 }

            // Calculate the parity of each parity check
            for (check, var) in self.iter_paritychecks() {
                if output[var/8] >> (7-(var%8)) & 1 == 1 {
                    working[check] ^= 0x80;
                }
            }

            // Count how many parity violations each variable is associated with
            let mut max_violations = 0;
            for (check, var) in self.iter_paritychecks() {
                if working[check] & 0x80 == 0x80 {
                    // Unless we have more than 127 checks for a single variable, this
                    // can't overflow into the parity bit. And we don't have that.
                    working[var] += 1;
                    if working[var] & 0x7F > max_violations {
                        max_violations = working[var] & 0x7F;
                    }
                }
            }

            if max_violations == 0 {
                return (true, iter + erasure_iters);
            } else {
                // Flip all the bits that have the maximum number of violations
                for (var, violations) in working.iter().enumerate() {
                    if *violations & 0x7F == max_violations {
                        output[var/8] ^= 1<<(7-(var%8));
                    }
                }
            }
        }

        (false, maxiters + erasure_iters)
    }

    /// Message passing based min-sum decoder.
    ///
    /// This algorithm is slower and requires more memory than the bit-flipping decode, but
    /// operates on soft information and provides very close to optimal decoding. If you don't have
    /// soft information, you can use `decode_hard_to_llrs` to go from hard information (bytes from
    /// a receiver) to soft information (LLRs).
    ///
    /// Requires:
    ///
    /// * `llrs` must be `n` long, with positive numbers more likely to be a 0 bit.
    /// * `output` must be allocated to (n+punctured_bits)/8 bytes, aka `output_len()`, of which
    ///   the first k/8 bytes will be set to the decoded message (and the rest to the parity bits
    ///   of the complete codeword)
    /// * `working` is the main working area which must be provided and must have
    ///   `decode_ms_working_len()` elements, equal to
    ///   2*paritycheck_sum + 3*n + 3*punctured_bits - 2*k
    /// * `working_u8` is the secondary working area which must be provided and must have
    ///   `decode_ms_working_u8_len()` elements, equal to (n + punctured_bits - k)/8.
    ///
    /// Will run for at most `maxiters` iterations.
    ///
    /// Returns decoding success and the number of iterations run for.
    ///
    /// ## Log Likelihood Ratios and choice of `T`
    ///
    /// The `llrs` input is a list of signed numbers, one per bit, where positive numbers mean
    /// a bit is more likely to be 0, and larger magnitude numbers indicate increased confidence
    /// on a logarithmic scale (so every step increase is a multiplication of the confidence).
    ///
    /// This decoder is invariant to a linear scaling of all the LLRs (in other words, it is
    /// invariant to the channel noise level), so you can choose any quantisation level and
    /// fixed-point interpretation you desire. This means you can view `i8` as representing
    /// the 256 numbers between -1 and +0.9921875, or as just representing -128 to +127.
    ///
    /// Internally, variables of type `T` are used to accumulate messages, so it is useful to leave
    /// some headroom in `T` after the range of your LLRs. For `T=i8` you might assign -32 to 31
    /// for LLR inputs, so that several full-scale messages can be accumulated before saturation
    /// occurs. On floating point types this is less of a concern.
    ///
    /// This also means if you only have hard information it makes no practical difference what
    /// exact value you give the LLRs, but in the interests of avoiding saturation you may as
    /// well pick +-1 in any unit (and you may as well use i8 since the additional range will
    /// not be of benefit).
    pub fn decode_ms<T: DecodeFrom>(&self, llrs: &[T], output: &mut [u8],
                                    working: &mut [T], working_u8: &mut [u8],
                                    maxiters: usize)
        -> (bool, usize)
    {
        let n = self.n();
        let k = self.k();
        let p = self.punctured_bits();

        assert_eq!(llrs.len(), n, "llrs.len() != n");
        assert_eq!(output.len(), self.output_len(), "output.len() != (n+p)/8");
        assert_eq!(working.len(), self.decode_ms_working_len(), "working.len() incorrect");
        assert_eq!(working_u8.len(), self.decode_ms_working_u8_len(), "working_u8 != (n+p-k)/8");

        // Rename output to parities as we'll use it to keep track of the parity bits until the end
        let parities = output;

        // Rename working_u8 to ui_sgns, we'll use it to accumulate signs for each check
        let ui_sgns = working_u8;

        // Zero the working area and split it up
        for w in &mut working[..] { *w = T::zero() }
        let (u, working)        = working.split_at_mut(self.paritycheck_sum() as usize);
        let (v, working)        = working.split_at_mut(self.paritycheck_sum() as usize);
        let (va, working)       = working.split_at_mut(n + p);
        let (ui_min1, ui_min2)  = working.split_at_mut(n + p - k);

        for iter in 0..maxiters {
            // Initialise the marginals to the input LLRs (and to 0 for punctured bits)
            va[..llrs.len()].copy_from_slice(llrs);
            for x in &mut va[llrs.len()..] { *x = T::zero() }

            // You'd think .enumerate() would be sensible, but actually it prevents
            // inlining the iterator's next() method, which leads to a big performance hit.
            let mut idx = 0;
            for (check, var) in self.iter_paritychecks() {
                // Work out messages to this variable
                if v[idx].abs() == ui_min1[check] {
                    u[idx] = ui_min2[check];
                } else {
                    u[idx] = ui_min1[check];
                }
                if ui_sgns[check/8] >> (check%8) & 1 == 1 {
                    u[idx] = -u[idx];
                }
                if v[idx] < T::zero() {
                    u[idx] = -u[idx];
                }

                // Accumulate incoming messages to each variable
                va[var] = va[var].saturating_add(u[idx]);

                // DIY enumerate
                idx += 1;
            }

            for x in &mut ui_min1[..] { *x = T::maxval() }
            for x in &mut ui_min2[..] { *x = T::maxval() }
            for x in &mut ui_sgns[..] { *x = 0 }
            for x in &mut parities[..] { *x = 0 }
            idx = 0;
            for (check, var) in self.iter_paritychecks() {
                // Work out messages to this parity check
                let new_v_ai = va[var] - u[idx];
                if v[idx] != T::zero() && (new_v_ai >= T::zero()) != (v[idx] >= T::zero()) {
                    v[idx] = T::zero();
                } else {
                    v[idx] = new_v_ai;
                }

                // Accumulate two minimums
                if v[idx].abs() < ui_min1[check] {
                    ui_min2[check] = ui_min1[check];
                    ui_min1[check] = v[idx].abs();
                } else if v[idx].abs() < ui_min2[check] {
                    ui_min2[check] = v[idx].abs();
                }

                // Accumulate signs
                if v[idx] < T::zero() {
                    ui_sgns[check/8] ^= 1<<(check%8);
                }

                // Accumulate parity
                if va[var] <= T::zero() {
                    parities[check/8] ^= 1<<(check%8);
                }

                idx += 1;
            }

            // Check parities. If none are 1 then we have a valid codeword.
            if *parities.iter().max().unwrap() == 0 {
                // Hard decode marginals into the output
                let output = parities;
                for o in &mut output[..] { *o = 0 }
                for (var, &va) in va[0..(n+p)].iter().enumerate() {
                    if va <= T::zero() {
                        output[var/8] |= 1 << (7 - (var%8));
                    }
                }
                return (true, iter);
            }
        }

        // If we failed to find a codeword, at least hard decode the marginals into the output
        let output = parities;
        for o in &mut output[..] { *o = 0 }
        for (var, &va) in va[0..(n+p)].iter().enumerate() {
            if va <= T::zero() {
                output[var/8] |= 1 << (7 - (var%8));
            }
        }
        (false, maxiters)
    }

    /// Convert hard information into LLRs.
    ///
    /// The min-sum decoding used in `decode_ms` is invariant to linear scaling
    /// in LLR, so it doesn't matter which value is picked so long as the sign
    /// is correct. This function just assigns -/+ 1 for 1/0 bits.
    ///
    /// `input` must be n/8 long, `llrs` must be n long.
    pub fn hard_to_llrs<T: DecodeFrom>(&self, input: &[u8], llrs: &mut [T]) {
        assert_eq!(input.len(), self.n()/8, "input.len() != n/8");
        assert_eq!(llrs.len(), self.n(), "llrs.len() != n");
        let llr = -T::one();
        for (idx, byte) in input.iter().enumerate() {
            for i in 0..8 {
                llrs[idx*8 + i] = if (byte >> (7-i)) & 1 == 1 { llr } else { -llr };
            }
        }
    }

    /// Convert LLRs into hard information.
    ///
    /// `llrs` must be n long, `output` must be n/8 long.
    pub fn llrs_to_hard<T: DecodeFrom>(&self, llrs: &[T], output: &mut [u8]) {
        assert_eq!(llrs.len(), self.n(), "llrs.len() != n");
        assert_eq!(output.len(), self.n()/8, "output.len() != n/8");

        for o in &mut output[..] { *o = 0 }

        for (i, llr) in llrs.iter().enumerate() {
            if *llr < T::zero() {
                output[i/8] |= 1 << (7 - (i%8));
            }
        }
    }
}

#[cfg(test)]
mod tests {
    use std::prelude::v1::*;

    use ::codes::{LDPCCode, CodeParams,
                  TC128_PARAMS,  TC256_PARAMS,  TC512_PARAMS,
                  TM1280_PARAMS, TM1536_PARAMS, TM2048_PARAMS,
                  TM5120_PARAMS, TM6144_PARAMS, TM8192_PARAMS};

    const CODES: [LDPCCode;  9] = [LDPCCode::TC128,   LDPCCode::TC256,   LDPCCode::TC512,
                                   LDPCCode::TM1280,  LDPCCode::TM1536,  LDPCCode::TM2048,
                                   LDPCCode::TM5120,  LDPCCode::TM6144,  LDPCCode::TM8192,
    ];

    const PARAMS: [CodeParams; 9] = [TC128_PARAMS,  TC256_PARAMS,  TC512_PARAMS,
                                     TM1280_PARAMS, TM1536_PARAMS, TM2048_PARAMS,
                                     TM5120_PARAMS, TM6144_PARAMS, TM8192_PARAMS,
    ];

    #[test]
    fn test_decode_ms_working_len() {
        for (code, param) in CODES.iter().zip(PARAMS.iter()) {
            assert_eq!(code.decode_ms_working_len(), param.decode_ms_working_len);
            assert_eq!(code.decode_ms_working_u8_len(), param.decode_ms_working_u8_len);
        }
    }

    #[test]
    fn test_decode_bf_working_len() {
        for (code, param) in CODES.iter().zip(PARAMS.iter()) {
            assert_eq!(code.decode_bf_working_len(), param.decode_bf_working_len);
        }
    }

    #[test]
    fn test_output_len() {
        for (code, param) in CODES.iter().zip(PARAMS.iter()) {
            assert_eq!(code.output_len(), param.output_len);
        }
    }

    #[test]
    fn test_hard_to_llrs() {
        let code = LDPCCode::TC128;
        let hard = vec![255, 254, 253, 252, 251, 250, 249, 248,
                        203, 102, 103, 120, 107,  30, 157, 169];
        let mut llrs = vec![0f32; code.n()];
        let llr = -1.0;
        code.hard_to_llrs(&hard, &mut llrs);
        assert_eq!(llrs, vec![
             llr,  llr,  llr,  llr,  llr,  llr,  llr,  llr,
             llr,  llr,  llr,  llr,  llr,  llr,  llr, -llr,
             llr,  llr,  llr,  llr,  llr,  llr, -llr,  llr,
             llr,  llr,  llr,  llr,  llr,  llr, -llr, -llr,
             llr,  llr,  llr,  llr,  llr, -llr,  llr,  llr,
             llr,  llr,  llr,  llr,  llr, -llr,  llr, -llr,
             llr,  llr,  llr,  llr,  llr, -llr, -llr,  llr,
             llr,  llr,  llr,  llr,  llr, -llr, -llr, -llr,
             llr,  llr, -llr, -llr,  llr, -llr,  llr,  llr,
            -llr,  llr,  llr, -llr, -llr,  llr,  llr, -llr,
            -llr,  llr,  llr, -llr, -llr,  llr,  llr,  llr,
            -llr,  llr,  llr,  llr,  llr, -llr, -llr, -llr,
            -llr,  llr,  llr, -llr,  llr, -llr,  llr,  llr,
            -llr, -llr, -llr,  llr,  llr,  llr,  llr, -llr,
             llr, -llr, -llr,  llr,  llr,  llr, -llr,  llr,
             llr, -llr,  llr, -llr,  llr, -llr, -llr,  llr]);
    }

    #[test]
    fn test_llrs_to_hard() {
        let code = LDPCCode::TC128;
        let llr = -1.0;
        let llrs = vec![
             llr,  llr,  llr,  llr,  llr,  llr,  llr,  llr,
             llr,  llr,  llr,  llr,  llr,  llr,  llr, -llr,
             llr,  llr,  llr,  llr,  llr,  llr, -llr,  llr,
             llr,  llr,  llr,  llr,  llr,  llr, -llr, -llr,
             llr,  llr,  llr,  llr,  llr, -llr,  llr,  llr,
             llr,  llr,  llr,  llr,  llr, -llr,  llr, -llr,
             llr,  llr,  llr,  llr,  llr, -llr, -llr,  llr,
             llr,  llr,  llr,  llr,  llr, -llr, -llr, -llr,
             llr,  llr, -llr, -llr,  llr, -llr,  llr,  llr,
            -llr,  llr,  llr, -llr, -llr,  llr,  llr, -llr,
            -llr,  llr,  llr, -llr, -llr,  llr,  llr,  llr,
            -llr,  llr,  llr,  llr,  llr, -llr, -llr, -llr,
            -llr,  llr,  llr, -llr,  llr, -llr,  llr,  llr,
            -llr, -llr, -llr,  llr,  llr,  llr,  llr, -llr,
             llr, -llr, -llr,  llr,  llr,  llr, -llr,  llr,
             llr, -llr,  llr, -llr,  llr, -llr, -llr,  llr];
        let mut hard = vec![0u8; code.n()/8];
        code.llrs_to_hard(&llrs, &mut hard);
        assert_eq!(hard, vec![255, 254, 253, 252, 251, 250, 249, 248,
                              203, 102, 103, 120, 107,  30, 157, 169]);
    }

    #[test]
    fn test_decode_erasures() {
        for code in &CODES {
            // Only bother testing codes that actually have punctured bits
            if code.punctured_bits() == 0 {
                continue;
            }

            // Encode a codeword
            let txdata: Vec<u8> = (0..code.k()/8).map(|x| x as u8).collect();
            let mut txcode = vec![0u8; code.n()/8];
            code.copy_encode(&txdata, &mut txcode);

            // Allocate working area
            let mut working = vec![0u8; code.decode_bf_working_len()];
            let mut output = vec![0u8; code.output_len()];

            // Copy TX codeword into output manually (normally done by `decode_bf()`).
            output[..txcode.len()].copy_from_slice(&txcode);

            // Run erasure decoder
            let (success, _) = code.decode_erasures(&mut output, &mut working, 50);

            assert!(success);

            // Now compare the result against the min-sum decoder which should
            // also correctly decode the punctured parity bits
            let mut llrs = vec![0i8; code.n()];
            let mut working_ms = vec![0i8; code.decode_ms_working_len()];
            let mut working_u8_ms = vec![0u8; code.decode_ms_working_u8_len()];
            let mut output_ms = vec![0u8; code.output_len()];
            code.hard_to_llrs(&txcode, &mut llrs);
            let (success, _) = code.decode_ms(&llrs, &mut output_ms, &mut working_ms,
                                              &mut working_u8_ms, 50);

            assert!(success);
            assert_eq!(output, output_ms);
        }
    }

    #[test]
    fn test_decode_bf() {
        for code in &CODES {
            // Make up some TX data
            let txdata: Vec<u8> = (0..code.k()/8).map(|x| x as u8).collect();
            let mut txcode = vec![0u8; code.n()/8];
            code.copy_encode(&txdata, &mut txcode);

            // Copy it and corrupt some bits
            let mut rxcode = txcode.clone();
            rxcode[0] ^= 1<<7 | 1<<5 | 1<<3;

            // Allocate working area and output area
            let mut working = vec![0u8; code.decode_bf_working_len()];
            let mut output = vec![0u8; code.output_len()];

            // Run decoder
            let (success, _) = code.decode_bf(&rxcode, &mut output, &mut working, 50);

            assert!(success);
            assert_eq!(&txcode[..], &output[..txcode.len()]);
        }

    }
    #[test]
    fn test_decode_ms() {
        for code in &CODES {
            // Make up a TX codeword
            let txdata: Vec<u8> = (0..code.k()/8).map(|x| x as u8).collect();
            let mut txcode = vec![0u8; code.n()/8];
            code.copy_encode(&txdata, &mut txcode);

            // Copy it and corrupt some bits
            let mut rxcode = txcode.clone();
            rxcode[0] ^= 1<<7 | 1<<5 | 1<<3;

            // Convert the hard data to LLRs
            let mut llrs = vec![0i8; code.n()];
            code.hard_to_llrs(&rxcode, &mut llrs);

            // Allocate working area and output area
            let mut working = vec![0i8; code.decode_ms_working_len()];
            let mut working_u8 = vec![0u8; code.output_len() - code.k()/8];
            let mut output = vec![0u8; code.output_len()];

            // Run decoder
            let (success, _) = code.decode_ms(&llrs, &mut output, &mut working,
                                              &mut working_u8, 50);

            assert!(success);
            assert_eq!(&txcode[..], &output[..txcode.len()]);
        }
    }
}