1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
//! Bézier paths (up to cubic).

#![allow(clippy::many_single_char_names)]

use std::iter::{Extend, FromIterator};
use std::ops::{Mul, Range};

use arrayvec::ArrayVec;

use crate::common::{solve_cubic, solve_quadratic};
use crate::MAX_EXTREMA;
use crate::{
    Affine, CubicBez, Line, ParamCurve, ParamCurveArclen, ParamCurveArea, ParamCurveExtrema,
    ParamCurveNearest, Point, QuadBez, Rect, Shape, TranslateScale,
};

/// A path that can Bézier segments up to cubic, possibly with multiple subpaths.
#[derive(Clone, Default, Debug)]
#[cfg_attr(feature = "serde", derive(serde::Serialize, serde::Deserialize))]
pub struct BezPath(Vec<PathEl>);

/// The element of a Bézier path.
///
/// A valid path has `Moveto` at the beginning of each subpath.
#[derive(Clone, Copy, Debug)]
#[cfg_attr(feature = "serde", derive(serde::Serialize, serde::Deserialize))]
pub enum PathEl {
    /// Move directly to the point without drawing anything, starting a new
    /// subpath.
    MoveTo(Point),
    /// Draw a line from the current location to the point.
    LineTo(Point),
    /// Draw a quadratic bezier using the current location and the two points.
    QuadTo(Point, Point),
    /// Draw a cubic bezier using the current location and the three points.
    CurveTo(Point, Point, Point),
    /// Close off the path.
    ClosePath,
}

/// A segment of a Bézier path.
#[derive(Clone, Copy, Debug, PartialEq)]
#[cfg_attr(feature = "serde", derive(serde::Serialize, serde::Deserialize))]
pub enum PathSeg {
    /// A line segment.
    Line(Line),
    /// A quadratic bezier segment.
    Quad(QuadBez),
    /// A cubic bezier segment.
    Cubic(CubicBez),
}

/// An intersection of a [`Line`] and a [`PathSeg`].
///
/// This can be generated with the [`PathSeg::intersect_line`] method.
///
/// [`Line`]: struct.Line.html
/// [`PathSeg`]: enum.PathSeg.html
/// [`PathSeg::intersect_line`]: enum.PathSeg.html#method.intersect_line
#[derive(Debug, Clone, Copy)]
pub struct LineIntersection {
    /// The 'time' that the intersection occurs, on the line.
    ///
    /// This value is in the range 0..1.
    pub line_t: f64,

    /// The 'time' that the intersection occurs, on the path segment.
    ///
    /// This value is nominally in the range 0..1, although it may slightly exceed
    /// that range at the boundaries of segments.
    pub segment_t: f64,
}

impl BezPath {
    /// Create a new path.
    pub fn new() -> BezPath {
        Default::default()
    }

    /// Create a path from a vector of path elements.
    ///
    /// `BezPath` also implements `FromIterator<PathEl>`, so it works with `collect`:
    ///
    /// ```
    /// // a very contrived example:
    /// use kurbo::{BezPath, PathEl};
    ///
    /// let path = BezPath::new();
    /// let as_vec: Vec<PathEl> = path.into_iter().collect();
    /// let back_to_path: BezPath = as_vec.into_iter().collect();
    /// ```
    pub fn from_vec(v: Vec<PathEl>) -> BezPath {
        BezPath(v)
    }

    /// Push a generic path element onto the path.
    pub fn push(&mut self, el: PathEl) {
        self.0.push(el)
    }

    /// Push a "move to" element onto the path.
    pub fn move_to<P: Into<Point>>(&mut self, p: P) {
        self.push(PathEl::MoveTo(p.into()));
    }

    /// Push a "line to" element onto the path.
    pub fn line_to<P: Into<Point>>(&mut self, p: P) {
        self.push(PathEl::LineTo(p.into()));
    }

    /// Push a "quad to" element onto the path.
    pub fn quad_to<P: Into<Point>>(&mut self, p1: P, p2: P) {
        self.push(PathEl::QuadTo(p1.into(), p2.into()));
    }

    /// Push a "curve to" element onto the path.
    pub fn curve_to<P: Into<Point>>(&mut self, p1: P, p2: P, p3: P) {
        self.push(PathEl::CurveTo(p1.into(), p2.into(), p3.into()));
    }

    /// Push a "close path" element onto the path.
    pub fn close_path(&mut self) {
        self.push(PathEl::ClosePath);
    }

    /// Get the path elements.
    pub fn elements(&self) -> &[PathEl] {
        &self.0
    }

    /// Returns an iterator over the path's elements.
    pub fn iter(&self) -> impl Iterator<Item = PathEl> + '_ {
        self.0.iter().copied()
    }

    /// Iterate over the path segments.
    pub fn segments(&self) -> impl Iterator<Item = PathSeg> + '_ {
        BezPath::segments_of_slice(&self.0)
    }

    /// Flatten the path, invoking the callback repeatedly.
    ///
    /// Flattening is the action of approximating a curve with a succession of line segments.
    ///
    /// <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 120 30" height="30mm" width="120mm">
    ///   <path d="M26.7 24.94l.82-11.15M44.46 5.1L33.8 7.34" fill="none" stroke="#55d400" stroke-width=".5"/>
    ///   <path d="M26.7 24.94c.97-11.13 7.17-17.6 17.76-19.84M75.27 24.94l1.13-5.5 2.67-5.48 4-4.42L88 6.7l5.02-1.6" fill="none" stroke="#000"/>
    ///   <path d="M77.57 19.37a1.1 1.1 0 0 1-1.08 1.08 1.1 1.1 0 0 1-1.1-1.08 1.1 1.1 0 0 1 1.08-1.1 1.1 1.1 0 0 1 1.1 1.1" color="#000" fill="none" stroke="#030303" stroke-linecap="round" stroke-opacity=".5"/>
    ///   <path d="M77.57 19.37a1.1 1.1 0 0 1-1.08 1.08 1.1 1.1 0 0 1-1.1-1.08 1.1 1.1 0 0 1 1.08-1.1 1.1 1.1 0 0 1 1.1 1.1" color="#000" fill="#fff"/>
    ///   <path d="M80.22 13.93a1.1 1.1 0 0 1-1.1 1.1 1.1 1.1 0 0 1-1.08-1.1 1.1 1.1 0 0 1 1.1-1.08 1.1 1.1 0 0 1 1.08 1.08" color="#000" fill="none" stroke="#030303" stroke-linecap="round" stroke-opacity=".5"/>
    ///   <path d="M80.22 13.93a1.1 1.1 0 0 1-1.1 1.1 1.1 1.1 0 0 1-1.08-1.1 1.1 1.1 0 0 1 1.1-1.08 1.1 1.1 0 0 1 1.08 1.08" color="#000" fill="#fff"/>
    ///   <path d="M84.08 9.55a1.1 1.1 0 0 1-1.08 1.1 1.1 1.1 0 0 1-1.1-1.1 1.1 1.1 0 0 1 1.1-1.1 1.1 1.1 0 0 1 1.08 1.1" color="#000" fill="none" stroke="#030303" stroke-linecap="round" stroke-opacity=".5"/>
    ///   <path d="M84.08 9.55a1.1 1.1 0 0 1-1.08 1.1 1.1 1.1 0 0 1-1.1-1.1 1.1 1.1 0 0 1 1.1-1.1 1.1 1.1 0 0 1 1.08 1.1" color="#000" fill="#fff"/>
    ///   <path d="M89.1 6.66a1.1 1.1 0 0 1-1.08 1.1 1.1 1.1 0 0 1-1.08-1.1 1.1 1.1 0 0 1 1.08-1.08 1.1 1.1 0 0 1 1.1 1.08" color="#000" fill="none" stroke="#030303" stroke-linecap="round" stroke-opacity=".5"/>
    ///   <path d="M89.1 6.66a1.1 1.1 0 0 1-1.08 1.1 1.1 1.1 0 0 1-1.08-1.1 1.1 1.1 0 0 1 1.08-1.08 1.1 1.1 0 0 1 1.1 1.08" color="#000" fill="#fff"/>
    ///   <path d="M94.4 5a1.1 1.1 0 0 1-1.1 1.1A1.1 1.1 0 0 1 92.23 5a1.1 1.1 0 0 1 1.08-1.08A1.1 1.1 0 0 1 94.4 5" color="#000" fill="none" stroke="#030303" stroke-linecap="round" stroke-opacity=".5"/>
    ///   <path d="M94.4 5a1.1 1.1 0 0 1-1.1 1.1A1.1 1.1 0 0 1 92.23 5a1.1 1.1 0 0 1 1.08-1.08A1.1 1.1 0 0 1 94.4 5" color="#000" fill="#fff"/>
    ///   <path d="M76.44 25.13a1.1 1.1 0 0 1-1.1 1.1 1.1 1.1 0 0 1-1.08-1.1 1.1 1.1 0 0 1 1.1-1.1 1.1 1.1 0 0 1 1.08 1.1" color="#000" fill="none" stroke="#030303" stroke-linecap="round" stroke-opacity=".5"/>
    ///   <path d="M76.44 25.13a1.1 1.1 0 0 1-1.1 1.1 1.1 1.1 0 0 1-1.08-1.1 1.1 1.1 0 0 1 1.1-1.1 1.1 1.1 0 0 1 1.08 1.1" color="#000" fill="#fff"/>
    ///   <path d="M27.78 24.9a1.1 1.1 0 0 1-1.08 1.08 1.1 1.1 0 0 1-1.1-1.08 1.1 1.1 0 0 1 1.1-1.1 1.1 1.1 0 0 1 1.08 1.1" color="#000" fill="none" stroke="#030303" stroke-linecap="round" stroke-opacity=".5"/>
    ///   <path d="M27.78 24.9a1.1 1.1 0 0 1-1.08 1.08 1.1 1.1 0 0 1-1.1-1.08 1.1 1.1 0 0 1 1.1-1.1 1.1 1.1 0 0 1 1.08 1.1" color="#000" fill="#fff"/>
    ///   <path d="M45.4 5.14a1.1 1.1 0 0 1-1.08 1.1 1.1 1.1 0 0 1-1.1-1.1 1.1 1.1 0 0 1 1.1-1.08 1.1 1.1 0 0 1 1.1 1.08" color="#000" fill="none" stroke="#030303" stroke-linecap="round" stroke-opacity=".5"/>
    ///   <path d="M45.4 5.14a1.1 1.1 0 0 1-1.08 1.1 1.1 1.1 0 0 1-1.1-1.1 1.1 1.1 0 0 1 1.1-1.08 1.1 1.1 0 0 1 1.1 1.08" color="#000" fill="#fff"/>
    ///   <path d="M28.67 13.8a1.1 1.1 0 0 1-1.1 1.08 1.1 1.1 0 0 1-1.08-1.08 1.1 1.1 0 0 1 1.08-1.1 1.1 1.1 0 0 1 1.1 1.1" color="#000" fill="none" stroke="#030303" stroke-linecap="round" stroke-opacity=".5"/>
    ///   <path d="M28.67 13.8a1.1 1.1 0 0 1-1.1 1.08 1.1 1.1 0 0 1-1.08-1.08 1.1 1.1 0 0 1 1.08-1.1 1.1 1.1 0 0 1 1.1 1.1" color="#000" fill="#fff"/>
    ///   <path d="M35 7.32a1.1 1.1 0 0 1-1.1 1.1 1.1 1.1 0 0 1-1.08-1.1 1.1 1.1 0 0 1 1.1-1.1A1.1 1.1 0 0 1 35 7.33" color="#000" fill="none" stroke="#030303" stroke-linecap="round" stroke-opacity=".5"/>
    ///   <path d="M35 7.32a1.1 1.1 0 0 1-1.1 1.1 1.1 1.1 0 0 1-1.08-1.1 1.1 1.1 0 0 1 1.1-1.1A1.1 1.1 0 0 1 35 7.33" color="#000" fill="#fff"/>
    ///   <text style="line-height:6.61458302px" x="35.74" y="284.49" font-size="5.29" font-family="Sans" letter-spacing="0" word-spacing="0" fill="#b3b3b3" stroke-width=".26" transform="translate(19.595 -267)">
    ///     <tspan x="35.74" y="284.49" font-size="10.58">→</tspan>
    ///   </text>
    /// </svg>
    ///
    /// The tolerance value controls the maximum distance between the curved input
    /// segments and their polyline approximations. (In technical terms, this is the
    /// Hausdorff distance). The algorithm attempts to bound this distance between
    /// by `tolerance` but this is not absolutely guaranteed. The appropriate value
    /// depends on the use, but for antialiasted rendering, a value of 0.25 has been
    /// determined to give good results. The number of segments tends to scale as the
    /// inverse square root of tolerance.
    ///
    /// <svg viewBox="0 0 47.5 13.2" height="100" width="350" xmlns="http://www.w3.org/2000/svg">
    ///   <path d="M-2.44 9.53c16.27-8.5 39.68-7.93 52.13 1.9" fill="none" stroke="#dde9af" stroke-width="4.6"/>
    ///   <path d="M-1.97 9.3C14.28 1.03 37.36 1.7 49.7 11.4" fill="none" stroke="#00d400" stroke-width=".57" stroke-linecap="round" stroke-dasharray="4.6, 2.291434"/>
    ///   <path d="M-1.94 10.46L6.2 6.08l28.32-1.4 15.17 6.74" fill="none" stroke="#000" stroke-width=".6"/>
    ///   <path d="M6.83 6.57a.9.9 0 0 1-1.25.15.9.9 0 0 1-.15-1.25.9.9 0 0 1 1.25-.15.9.9 0 0 1 .15 1.25" color="#000" stroke="#000" stroke-width=".57" stroke-linecap="round" stroke-opacity=".5"/>
    ///   <path d="M35.35 5.3a.9.9 0 0 1-1.25.15.9.9 0 0 1-.15-1.25.9.9 0 0 1 1.25-.15.9.9 0 0 1 .15 1.24" color="#000" stroke="#000" stroke-width=".6" stroke-opacity=".5"/>
    ///   <g fill="none" stroke="#ff7f2a" stroke-width=".26">
    ///     <path d="M20.4 3.8l.1 1.83M19.9 4.28l.48-.56.57.52M21.02 5.18l-.5.56-.6-.53" stroke-width=".2978872"/>
    ///   </g>
    /// </svg>
    ///
    /// The callback will be called in order with each element of the generated
    /// path. Because the result is made of polylines, these will be straight-line
    /// path elements only, no curves.
    ///
    /// This algorithm is based on the blog post [Flattening quadratic Béziers]
    /// but with some refinements. For one, there is a more careful approximation
    /// at cusps. For two, the algorithm is extended to work with cubic Béziers
    /// as well, by first subdividing into quadratics and then computing the
    /// subdivision of each quadratic. However, as a clever trick, these quadratics
    /// are subdivided fractionally, and their endpoints are not included.
    ///
    /// TODO: write a paper explaining this in more detail.
    ///
    /// Note: the [`flatten`](fn.flatten.html) function provides the same
    /// functionality but works with slices and other [`PathEl`] iterators.
    ///
    /// [Flattening quadratic Béziers]: https://raphlinus.github.io/graphics/curves/2019/12/23/flatten-quadbez.html
    /// [`PathEl`]: enum.PathEl.html
    pub fn flatten(&self, tolerance: f64, callback: impl FnMut(PathEl)) {
        flatten(self, tolerance, callback);
    }

    // TODO: expose as pub method? Maybe should be a trait so slice.segments() works?
    fn segments_of_slice(slice: &[PathEl]) -> BezPathSegs {
        let first = match slice.get(0) {
            Some(PathEl::MoveTo(p)) => *p,
            Some(PathEl::LineTo(p)) => *p,
            Some(PathEl::QuadTo(_, p2)) => *p2,
            Some(PathEl::CurveTo(_, _, p3)) => *p3,
            Some(PathEl::ClosePath) => panic!("Can't start a segment on a ClosePath"),
            None => Default::default(),
        };

        BezPathSegs {
            c: slice.iter(),
            start: first,
            last: first,
        }
    }

    /// Get the segment at the given element index.
    ///
    /// The element index counts [`PathEl`](enum.PathEl.html) elements, so
    /// for example includes an initial `Moveto`.
    pub fn get_seg(&self, ix: usize) -> Option<PathSeg> {
        if ix == 0 || ix >= self.0.len() {
            return None;
        }
        let last = match self.0[ix - 1] {
            PathEl::MoveTo(p) => p,
            PathEl::LineTo(p) => p,
            PathEl::QuadTo(_, p2) => p2,
            PathEl::CurveTo(_, _, p3) => p3,
            _ => return None,
        };
        match self.0[ix] {
            PathEl::LineTo(p) => Some(PathSeg::Line(Line::new(last, p))),
            PathEl::QuadTo(p1, p2) => Some(PathSeg::Quad(QuadBez::new(last, p1, p2))),
            PathEl::CurveTo(p1, p2, p3) => Some(PathSeg::Cubic(CubicBez::new(last, p1, p2, p3))),
            PathEl::ClosePath => self.0[..ix].iter().rev().find_map(|el| match *el {
                PathEl::MoveTo(start) => Some(PathSeg::Line(Line::new(last, start))),
                _ => None,
            }),
            _ => None,
        }
    }

    /// Returns `true` if the path contains no segments.
    pub fn is_empty(&self) -> bool {
        !self.0.iter().any(|el| match *el {
            PathEl::LineTo(..) | PathEl::QuadTo(..) | PathEl::CurveTo(..) => true,
            _ => false,
        })
    }

    /// Apply an affine transform to the path.
    pub fn apply_affine(&mut self, affine: Affine) {
        for el in self.0.iter_mut() {
            *el = affine * (*el);
        }
    }

    /// Find the nearest point.
    ///
    /// Panics if path is empty or invalid.
    ///
    /// Note that the returned index counts segments, not elements. Thus, the
    /// initial `Moveto` is not counted. For a simple path consisting of a `Moveto`
    /// followed by `Lineto/Quadto/Cubicto` elements, the element index is the
    /// segment index + 1.
    ///
    /// Returns the index of the segment, the parameter within that segment, and
    /// the square of the distance to the point.
    pub fn nearest(&self, p: Point, accuracy: f64) -> (usize, f64, f64) {
        let mut best = None;
        for (ix, seg) in self.segments().enumerate() {
            let (t, r) = seg.nearest(p, accuracy);
            if best.map(|(_, _, r_best)| r < r_best).unwrap_or(true) {
                best = Some((ix, t, r));
            }
        }
        best.unwrap()
    }
}

impl FromIterator<PathEl> for BezPath {
    fn from_iter<T: IntoIterator<Item = PathEl>>(iter: T) -> Self {
        let el_vec: Vec<_> = iter.into_iter().collect();
        BezPath::from_vec(el_vec)
    }
}

/// Allow iteration over references to `BezPath`.
///
/// Note: the semantics are slightly different than simply iterating over the
/// slice, as it returns `PathEl` items, rather than references.
impl<'a> IntoIterator for &'a BezPath {
    type Item = PathEl;
    type IntoIter = std::iter::Cloned<std::slice::Iter<'a, PathEl>>;

    fn into_iter(self) -> Self::IntoIter {
        self.elements().iter().cloned()
    }
}

impl IntoIterator for BezPath {
    type Item = PathEl;
    type IntoIter = std::vec::IntoIter<PathEl>;

    fn into_iter(self) -> Self::IntoIter {
        self.0.into_iter()
    }
}

impl Extend<PathEl> for BezPath {
    fn extend<I: IntoIterator<Item = PathEl>>(&mut self, iter: I) {
        self.0.extend(iter);
    }
}

/// Proportion of tolerance budget that goes to cubic to quadratic conversion.
const TO_QUAD_TOL: f64 = 0.1;

/// Flatten the path, invoking the callback repeatedly.
///
/// See [`BezPath::flatten`](struct.BezPath.html#method.flatten) for more discussion.
/// This signature is a bit more general, allowing flattening of `&[PathEl]` slices
/// and other iterators yielding `PathEl`.
pub fn flatten(
    path: impl IntoIterator<Item = PathEl>,
    tolerance: f64,
    mut callback: impl FnMut(PathEl),
) {
    let sqrt_tol = tolerance.sqrt();
    let mut last_pt = None;
    let mut quad_buf = Vec::new();
    for el in path {
        match el {
            PathEl::MoveTo(p) => {
                last_pt = Some(p);
                callback(PathEl::MoveTo(p));
            }
            PathEl::LineTo(p) => {
                last_pt = Some(p);
                callback(PathEl::LineTo(p));
            }
            PathEl::QuadTo(p1, p2) => {
                if let Some(p0) = last_pt {
                    let q = QuadBez::new(p0, p1, p2);
                    let params = q.estimate_subdiv(sqrt_tol);
                    let n = ((0.5 * params.val / sqrt_tol).ceil() as usize).max(1);
                    let step = 1.0 / (n as f64);
                    for i in 1..(n - 1) {
                        let u = (i as f64) * step;
                        let t = q.determine_subdiv_t(&params, u);
                        let p = q.eval(t);
                        callback(PathEl::LineTo(p));
                    }
                    callback(PathEl::LineTo(p2));
                }
                last_pt = Some(p2);
            }
            PathEl::CurveTo(p1, p2, p3) => {
                if let Some(p0) = last_pt {
                    let c = CubicBez::new(p0, p1, p2, p3);

                    // Subdivide into quadratics, and estimate the number of
                    // subdivisions required for each, summing to arrive at an
                    // estimate for the number of subdivisions for the cubic.
                    // Also retain these parameters for later.
                    let iter = c.to_quads(tolerance * TO_QUAD_TOL);
                    quad_buf.clear();
                    quad_buf.reserve(iter.size_hint().0);
                    let sqrt_remain_tol = sqrt_tol * (1.0 - TO_QUAD_TOL).sqrt();
                    let mut sum = 0.0;
                    for (_, _, q) in iter {
                        let params = q.estimate_subdiv(sqrt_remain_tol);
                        sum += params.val;
                        quad_buf.push((q, params));
                    }
                    let n = ((0.5 * sum / sqrt_remain_tol).ceil() as usize).max(1);

                    // Iterate through the quadratics, outputting the points of
                    // subdivisions that fall within that quadratic.
                    let step = sum / (n as f64);
                    let mut i = 1;
                    let mut val_sum = 0.0;
                    for (q, params) in &quad_buf {
                        let mut target = (i as f64) * step;
                        let recip_val = params.val.recip();
                        while target < val_sum + params.val {
                            let u = (target - val_sum) * recip_val;
                            let t = q.determine_subdiv_t(&params, u);
                            let p = q.eval(t);
                            callback(PathEl::LineTo(p));
                            i += 1;
                            if i == n + 1 {
                                break;
                            }
                            target = (i as f64) * step;
                        }
                        val_sum += params.val;
                    }
                    callback(PathEl::LineTo(p3));
                }
                last_pt = Some(p3);
            }
            PathEl::ClosePath => {
                last_pt = None;
                callback(PathEl::ClosePath);
            }
        }
    }
}

impl Mul<PathEl> for Affine {
    type Output = PathEl;

    fn mul(self, other: PathEl) -> PathEl {
        match other {
            PathEl::MoveTo(p) => PathEl::MoveTo(self * p),
            PathEl::LineTo(p) => PathEl::LineTo(self * p),
            PathEl::QuadTo(p1, p2) => PathEl::QuadTo(self * p1, self * p2),
            PathEl::CurveTo(p1, p2, p3) => PathEl::CurveTo(self * p1, self * p2, self * p3),
            PathEl::ClosePath => PathEl::ClosePath,
        }
    }
}

impl Mul<BezPath> for Affine {
    type Output = BezPath;

    fn mul(self, other: BezPath) -> BezPath {
        BezPath(other.0.iter().map(|&el| self * el).collect())
    }
}

impl<'a> Mul<&'a BezPath> for Affine {
    type Output = BezPath;

    fn mul(self, other: &BezPath) -> BezPath {
        BezPath(other.0.iter().map(|&el| self * el).collect())
    }
}

impl Mul<PathEl> for TranslateScale {
    type Output = PathEl;

    fn mul(self, other: PathEl) -> PathEl {
        match other {
            PathEl::MoveTo(p) => PathEl::MoveTo(self * p),
            PathEl::LineTo(p) => PathEl::LineTo(self * p),
            PathEl::QuadTo(p1, p2) => PathEl::QuadTo(self * p1, self * p2),
            PathEl::CurveTo(p1, p2, p3) => PathEl::CurveTo(self * p1, self * p2, self * p3),
            PathEl::ClosePath => PathEl::ClosePath,
        }
    }
}

impl Mul<BezPath> for TranslateScale {
    type Output = BezPath;

    fn mul(self, other: BezPath) -> BezPath {
        BezPath(other.0.iter().map(|&el| self * el).collect())
    }
}

impl<'a> Mul<&'a BezPath> for TranslateScale {
    type Output = BezPath;

    fn mul(self, other: &BezPath) -> BezPath {
        BezPath(other.0.iter().map(|&el| self * el).collect())
    }
}

struct BezPathSegs<'a> {
    c: std::slice::Iter<'a, PathEl>,
    start: Point,
    last: Point,
}

impl<'a> Iterator for BezPathSegs<'a> {
    type Item = PathSeg;

    fn next(&mut self) -> Option<PathSeg> {
        for el in &mut self.c {
            let (ret, last) = match *el {
                PathEl::MoveTo(p) => {
                    self.start = p;
                    self.last = p;
                    continue;
                }
                PathEl::LineTo(p) => (PathSeg::Line(Line::new(self.last, p)), p),
                PathEl::QuadTo(p1, p2) => (PathSeg::Quad(QuadBez::new(self.last, p1, p2)), p2),
                PathEl::CurveTo(p1, p2, p3) => {
                    (PathSeg::Cubic(CubicBez::new(self.last, p1, p2, p3)), p3)
                }
                PathEl::ClosePath => {
                    if self.last != self.start {
                        (PathSeg::Line(Line::new(self.last, self.start)), self.start)
                    } else {
                        continue;
                    }
                }
            };

            self.last = last;
            return Some(ret);
        }
        None
    }
}

impl<'a> BezPathSegs<'a> {
    /// Here, `accuracy` specifies the accuracy for each Bézier segment. At worst,
    /// the total error is `accuracy` times the number of Bézier segments.

    // TODO: pub? Or is this subsumed by method of &[PathEl]?
    fn arclen(self, accuracy: f64) -> f64 {
        self.map(|seg| seg.arclen(accuracy)).sum()
    }

    // Same
    fn area(self) -> f64 {
        self.map(|seg| seg.signed_area()).sum()
    }

    // Same
    fn winding(self, p: Point) -> i32 {
        self.map(|seg| seg.winding(p)).sum()
    }

    // Same
    fn bounding_box(self) -> Rect {
        let mut bbox: Option<Rect> = None;
        for seg in self {
            let seg_bb = seg.bounding_box();
            if let Some(bb) = bbox {
                bbox = Some(bb.union(seg_bb));
            } else {
                bbox = Some(seg_bb)
            }
        }
        bbox.unwrap_or_default()
    }
}

impl ParamCurve for PathSeg {
    fn eval(&self, t: f64) -> Point {
        match *self {
            PathSeg::Line(line) => line.eval(t),
            PathSeg::Quad(quad) => quad.eval(t),
            PathSeg::Cubic(cubic) => cubic.eval(t),
        }
    }

    fn subsegment(&self, range: Range<f64>) -> PathSeg {
        match *self {
            PathSeg::Line(line) => PathSeg::Line(line.subsegment(range)),
            PathSeg::Quad(quad) => PathSeg::Quad(quad.subsegment(range)),
            PathSeg::Cubic(cubic) => PathSeg::Cubic(cubic.subsegment(range)),
        }
    }
}

impl ParamCurveArclen for PathSeg {
    fn arclen(&self, accuracy: f64) -> f64 {
        match *self {
            PathSeg::Line(line) => line.arclen(accuracy),
            PathSeg::Quad(quad) => quad.arclen(accuracy),
            PathSeg::Cubic(cubic) => cubic.arclen(accuracy),
        }
    }
}

impl ParamCurveArea for PathSeg {
    fn signed_area(&self) -> f64 {
        match *self {
            PathSeg::Line(line) => line.signed_area(),
            PathSeg::Quad(quad) => quad.signed_area(),
            PathSeg::Cubic(cubic) => cubic.signed_area(),
        }
    }
}

impl ParamCurveNearest for PathSeg {
    fn nearest(&self, p: Point, accuracy: f64) -> (f64, f64) {
        match *self {
            PathSeg::Line(line) => line.nearest(p, accuracy),
            PathSeg::Quad(quad) => quad.nearest(p, accuracy),
            PathSeg::Cubic(cubic) => cubic.nearest(p, accuracy),
        }
    }
}

impl ParamCurveExtrema for PathSeg {
    fn extrema(&self) -> ArrayVec<[f64; MAX_EXTREMA]> {
        match *self {
            PathSeg::Line(line) => line.extrema(),
            PathSeg::Quad(quad) => quad.extrema(),
            PathSeg::Cubic(cubic) => cubic.extrema(),
        }
    }
}

impl PathSeg {
    /// Returns a new `PathSeg` describing the same path as `self`, but with
    /// the points reversed.
    pub fn reverse(&self) -> PathSeg {
        match self {
            PathSeg::Line(Line { p0, p1 }) => PathSeg::Line(Line::new(*p1, *p0)),
            PathSeg::Quad(q) => PathSeg::Quad(QuadBez::new(q.p2, q.p1, q.p0)),
            PathSeg::Cubic(c) => PathSeg::Cubic(CubicBez::new(c.p3, c.p2, c.p1, c.p0)),
        }
    }

    /// Convert this segment to a cubic bezier.
    pub fn to_cubic(&self) -> CubicBez {
        match *self {
            PathSeg::Line(Line { p0, p1 }) => CubicBez::new(p0, p0, p1, p1),
            PathSeg::Cubic(c) => c,
            PathSeg::Quad(q) => q.raise(),
        }
    }

    // Assumes split at extrema.
    fn winding_inner(&self, p: Point) -> i32 {
        let start = self.start();
        let end = self.end();
        let sign = if end.y > start.y {
            if p.y < start.y || p.y >= end.y {
                return 0;
            }
            -1
        } else if end.y < start.y {
            if p.y < end.y || p.y >= start.y {
                return 0;
            }
            1
        } else {
            return 0;
        };
        match *self {
            PathSeg::Line(_line) => {
                if p.x < start.x.min(end.x) {
                    return 0;
                }
                if p.x >= start.x.max(end.x) {
                    return sign;
                }
                // line equation ax + by = c
                let a = end.y - start.y;
                let b = start.x - end.x;
                let c = a * start.x + b * start.y;
                if (a * p.x + b * p.y - c) * (sign as f64) >= 0.0 {
                    sign
                } else {
                    0
                }
            }
            PathSeg::Quad(quad) => {
                let p1 = quad.p1;
                if p.x < start.x.min(end.x).min(p1.x) {
                    return 0;
                }
                if p.x >= start.x.max(end.x).max(p1.x) {
                    return sign;
                }
                let a = end.y - 2.0 * p1.y + start.y;
                let b = 2.0 * (p1.y - start.y);
                let c = start.y - p.y;
                for t in solve_quadratic(c, b, a) {
                    if t >= 0.0 && t <= 1.0 {
                        let x = quad.eval(t).x;
                        if p.x >= x {
                            return sign;
                        } else {
                            return 0;
                        }
                    }
                }
                0
            }
            PathSeg::Cubic(cubic) => {
                let p1 = cubic.p1;
                let p2 = cubic.p2;
                if p.x < start.x.min(end.x).min(p1.x).min(p2.x) {
                    return 0;
                }
                if p.x >= start.x.max(end.x).max(p1.x).max(p2.x) {
                    return sign;
                }
                let a = end.y - 3.0 * p2.y + 3.0 * p1.y - start.y;
                let b = 3.0 * (p2.y - 2.0 * p1.y + start.y);
                let c = 3.0 * (p1.y - start.y);
                let d = start.y - p.y;
                for t in solve_cubic(d, c, b, a) {
                    if t >= 0.0 && t <= 1.0 {
                        let x = cubic.eval(t).x;
                        if p.x >= x {
                            return sign;
                        } else {
                            return 0;
                        }
                    }
                }
                0
            }
        }
    }

    /// Compute the winding number contribution of a single segment.
    ///
    /// Cast a ray to the left and count intersections.
    fn winding(&self, p: Point) -> i32 {
        self.extrema_ranges()
            .into_iter()
            .map(|range| self.subsegment(range).winding_inner(p))
            .sum()
    }

    /// Compute intersections against a line.
    ///
    /// Returns a vector of the intersections. For each intersection, the `t` value of the
    /// segment and line are given.
    ///
    /// Note: This test is designed to be inclusive of points near the endpoints of
    /// the segment. This is so that testing a line against multiple contiguous segments
    /// of a path will be guaranteed to catch at least one of them. In such cases, use
    /// higher level logic to coalesce the hits (the `t` value may be slightly outside
    /// the range of 0..1).
    ///
    /// # Examples
    ///
    /// ```
    /// # use kurbo::*;
    /// let seg = PathSeg::Line(Line::new((0.0, 0.0), (2.0, 0.0)));
    /// let line = Line::new((1.0, 2.0), (1.0, -2.0));
    /// let intersection = seg.intersect_line(line);
    /// assert_eq!(intersection.len(), 1);
    /// let intersection = intersection[0];
    /// assert_eq!(intersection.segment_t, 0.5);
    /// assert_eq!(intersection.line_t, 0.5);
    ///
    /// let point = seg.eval(intersection.segment_t);
    /// assert_eq!(point, Point::new(1.0, 0.0));
    /// ```
    pub fn intersect_line(&self, line: Line) -> ArrayVec<[LineIntersection; 3]> {
        const EPSILON: f64 = 1e-9;
        let p0 = line.p0;
        let p1 = line.p1;
        let dx = p1.x - p0.x;
        let dy = p1.y - p0.y;
        let mut result = ArrayVec::new();
        match self {
            PathSeg::Line(l) => {
                let det = dx * (l.p1.y - l.p0.y) - dy * (l.p1.x - l.p0.x);
                if det.abs() < EPSILON {
                    // Lines are coincident (or nearly so).
                    return result;
                }
                let t = dx * (p0.y - l.p0.y) - dy * (p0.x - l.p0.x);
                // t = position on self
                let t = t / det;
                if t >= -EPSILON && t <= 1.0 + EPSILON {
                    // u = position on probe line
                    let u =
                        (l.p0.x - p0.x) * (l.p1.y - l.p0.y) - (l.p0.y - p0.y) * (l.p1.x - l.p0.x);
                    let u = u / det;
                    if u >= 0.0 && u <= 1.0 {
                        result.push(LineIntersection::new(u, t));
                    }
                }
            }
            PathSeg::Quad(q) => {
                // The basic technique here is to determine x and y as a quadratic polynomial
                // as a function of t. Then plug those values into the line equation for the
                // probe line (giving a sort of signed distance from the probe line) and solve
                // that for t.
                let (px0, px1, px2) = quadratic_bez_coefs(q.p0.x, q.p1.x, q.p2.x);
                let (py0, py1, py2) = quadratic_bez_coefs(q.p0.y, q.p1.y, q.p2.y);
                let c0 = dy * (px0 - p0.x) - dx * (py0 - p0.y);
                let c1 = dy * px1 - dx * py1;
                let c2 = dy * px2 - dx * py2;
                let invlen2 = (dx * dx + dy * dy).recip();
                for t in crate::common::solve_quadratic(c0, c1, c2) {
                    if t >= -EPSILON && t <= 1.0 + EPSILON {
                        let x = px0 + t * px1 + t * t * px2;
                        let y = py0 + t * py1 + t * t * py2;
                        let u = ((x - p0.x) * dx + (y - p0.y) * dy) * invlen2;
                        if u >= 0.0 && u <= 1.0 {
                            result.push(LineIntersection::new(u, t));
                        }
                    }
                }
            }
            PathSeg::Cubic(c) => {
                // Same technique as above, but cubic polynomial.
                let (px0, px1, px2, px3) = cubic_bez_coefs(c.p0.x, c.p1.x, c.p2.x, c.p3.x);
                let (py0, py1, py2, py3) = cubic_bez_coefs(c.p0.y, c.p1.y, c.p2.y, c.p3.y);
                let c0 = dy * (px0 - p0.x) - dx * (py0 - p0.y);
                let c1 = dy * px1 - dx * py1;
                let c2 = dy * px2 - dx * py2;
                let c3 = dy * px3 - dx * py3;
                let invlen2 = (dx * dx + dy * dy).recip();
                for t in crate::common::solve_cubic(c0, c1, c2, c3) {
                    if t >= -EPSILON && t <= 1.0 + EPSILON {
                        let x = px0 + t * px1 + t * t * px2 + t * t * t * px3;
                        let y = py0 + t * py1 + t * t * py2 + t * t * t * py3;
                        let u = ((x - p0.x) * dx + (y - p0.y) * dy) * invlen2;
                        if u >= 0.0 && u <= 1.0 {
                            result.push(LineIntersection::new(u, t));
                        }
                    }
                }
            }
        }
        result
    }
}

impl LineIntersection {
    fn new(line_t: f64, segment_t: f64) -> Self {
        LineIntersection { line_t, segment_t }
    }
}

// Return polynomial coefficients given cubic bezier coordinates.
fn quadratic_bez_coefs(x0: f64, x1: f64, x2: f64) -> (f64, f64, f64) {
    let p0 = x0;
    let p1 = 2.0 * x1 - 2.0 * x0;
    let p2 = x2 - 2.0 * x1 + x0;
    (p0, p1, p2)
}

// Return polynomial coefficients given cubic bezier coordinates.
fn cubic_bez_coefs(x0: f64, x1: f64, x2: f64, x3: f64) -> (f64, f64, f64, f64) {
    let p0 = x0;
    let p1 = 3.0 * x1 - 3.0 * x0;
    let p2 = 3.0 * x2 - 6.0 * x1 + 3.0 * x0;
    let p3 = x3 - 3.0 * x2 + 3.0 * x1 - x0;
    (p0, p1, p2, p3)
}

impl From<CubicBez> for PathSeg {
    fn from(cubic_bez: CubicBez) -> PathSeg {
        PathSeg::Cubic(cubic_bez)
    }
}

impl From<Line> for PathSeg {
    fn from(line: Line) -> PathSeg {
        PathSeg::Line(line)
    }
}

impl From<QuadBez> for PathSeg {
    fn from(quad_bez: QuadBez) -> PathSeg {
        PathSeg::Quad(quad_bez)
    }
}

impl Shape for BezPath {
    type BezPathIter = std::vec::IntoIter<PathEl>;

    fn to_bez_path(&self, _tolerance: f64) -> Self::BezPathIter {
        self.clone().0.into_iter()
    }

    /// Signed area.
    fn area(&self) -> f64 {
        self.elements().area()
    }

    fn perimeter(&self, accuracy: f64) -> f64 {
        self.elements().perimeter(accuracy)
    }

    /// Winding number of point.
    fn winding(&self, pt: Point) -> i32 {
        self.elements().winding(pt)
    }

    fn bounding_box(&self) -> Rect {
        self.elements().bounding_box()
    }

    fn as_path_slice(&self) -> Option<&[PathEl]> {
        Some(&self.0)
    }
}

/// Implements [`Shape`] for a slice of [`PathEl`], provided that the first element of the slice is
/// not a `PathEl::ClosePath`. If it is, several of these functions will panic.
///
/// If the slice starts with `LineTo`, `QuadTo`, or `CurveTo`, it will be treated as a `MoveTo`.
impl<'a> Shape for &'a [PathEl] {
    type BezPathIter = std::iter::Cloned<std::slice::Iter<'a, PathEl>>;

    #[inline]
    fn to_bez_path(&self, _tolerance: f64) -> Self::BezPathIter {
        self.iter().cloned()
    }

    /// Signed area.
    fn area(&self) -> f64 {
        BezPath::segments_of_slice(self).area()
    }

    fn perimeter(&self, accuracy: f64) -> f64 {
        BezPath::segments_of_slice(self).arclen(accuracy)
    }

    /// Winding number of point.
    fn winding(&self, pt: Point) -> i32 {
        BezPath::segments_of_slice(self).winding(pt)
    }

    fn bounding_box(&self) -> Rect {
        BezPath::segments_of_slice(self).bounding_box()
    }

    #[inline]
    fn as_path_slice(&self) -> Option<&[PathEl]> {
        Some(self)
    }
}

#[cfg(test)]
mod tests {
    use super::{CubicBez, Line, PathSeg, QuadBez};

    fn assert_approx_eq(x: f64, y: f64) {
        assert!((x - y).abs() < 1e-8, "{} != {}", x, y);
    }

    #[test]
    fn test_intersect_line() {
        let h_line = Line::new((0.0, 0.0), (100.0, 0.0));
        let v_line = Line::new((10.0, -10.0), (10.0, 10.0));
        let intersection = PathSeg::Line(h_line).intersect_line(v_line)[0];
        assert_approx_eq(intersection.segment_t, 0.1);
        assert_approx_eq(intersection.line_t, 0.5);

        let v_line = Line::new((-10.0, -10.0), (-10.0, 10.0));
        assert!(PathSeg::Line(h_line).intersect_line(v_line).is_empty());

        let v_line = Line::new((10.0, 10.0), (10.0, 20.0));
        assert!(PathSeg::Line(h_line).intersect_line(v_line).is_empty());
    }

    #[test]
    fn test_intersect_qad() {
        let q = QuadBez::new((0.0, -10.0), (10.0, 20.0), (20.0, -10.0));
        let v_line = Line::new((10.0, -10.0), (10.0, 10.0));
        assert_eq!(PathSeg::Quad(q).intersect_line(v_line).len(), 1);
        let intersection = PathSeg::Quad(q).intersect_line(v_line)[0];
        assert_approx_eq(intersection.segment_t, 0.5);
        assert_approx_eq(intersection.line_t, 0.75);

        let h_line = Line::new((0.0, 0.0), (100.0, 0.0));
        assert_eq!(PathSeg::Quad(q).intersect_line(h_line).len(), 2);
    }

    #[test]
    fn test_intersect_cubic() {
        let c = CubicBez::new((0.0, -10.0), (10.0, 20.0), (20.0, -20.0), (30.0, 10.0));
        let v_line = Line::new((10.0, -10.0), (10.0, 10.0));
        assert_eq!(PathSeg::Cubic(c).intersect_line(v_line).len(), 1);
        let intersection = PathSeg::Cubic(c).intersect_line(v_line)[0];
        assert_approx_eq(intersection.segment_t, 0.333333333);
        assert_approx_eq(intersection.line_t, 0.592592592);

        let h_line = Line::new((0.0, 0.0), (100.0, 0.0));
        assert_eq!(PathSeg::Cubic(c).intersect_line(h_line).len(), 3);
    }
}