1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
//! Affine transforms.

use std::ops::{Mul, MulAssign};

use crate::{Point, Vec2};

/// A 2D affine transform.
#[derive(Clone, Copy, Debug)]
pub struct Affine([f64; 6]);

impl Affine {
    /// Construct an affine transform from coefficients.
    ///
    /// If the coefficients are `(a, b, c, d, e, f)`, then the resulting
    /// transformation represents this augmented matrix:
    ///
    /// ```text
    /// | a c e |
    /// | b d f |
    /// | 0 0 1 |
    /// ```
    ///
    /// Note that this convention is transposed from PostScript and
    /// Direct2D, but is consistent with the
    /// [Wikipedia](https://en.wikipedia.org/wiki/Affine_transformation)
    /// formulation of affine transformation as augmented matrix. The
    /// idea is that `(A * B) * v == A * (B * v)`, where `*` is the
    /// [`Mul`](https://doc.rust-lang.org/std/ops/trait.Mul.html) trait.
    #[inline]
    pub fn new(c: [f64; 6]) -> Affine {
        Affine(c)
    }

    /// An affine transform representing uniform scaling.
    #[inline]
    pub fn scale(s: f64) -> Affine {
        Affine([s, 0.0, 0.0, s, 0.0, 0.0])
    }

    /// An affine transform representing rotation.
    ///
    /// The convention for rotation is that a positive angle rotates a
    /// positive X direction into positive Y. Thus, in a Y-down coordinate
    /// system (as is common for graphics), it is a clockwise rotation, and
    /// in Y-up (traditional for math), it is anti-clockwise.
    ///
    /// The angle, `th`, is expressed in radians.
    #[inline]
    pub fn rotate(th: f64) -> Affine {
        let s = th.sin();
        let c = th.cos();
        Affine([c, s, -s, c, 0.0, 0.0])
    }

    /// An affine transform representing translation.
    #[inline]
    pub fn translate<V: Into<Vec2>>(p: V) -> Affine {
        let p = p.into();
        Affine([1.0, 0.0, 0.0, 1.0, p.x, p.y])
    }

    /// Get the coefficients of the transform.
    #[inline]
    pub fn as_coeffs(self) -> [f64; 6] {
        self.0
    }
}

impl Default for Affine {
    #[inline]
    fn default() -> Affine {
        Affine::scale(1.0)
    }
}

impl Mul<Point> for Affine {
    type Output = Point;

    #[inline]
    fn mul(self, other: Point) -> Point {
        Point::new(
            self.0[0] * other.x + self.0[2] * other.y + self.0[4],
            self.0[1] * other.x + self.0[3] * other.y + self.0[5],
        )
    }
}

impl Mul for Affine {
    type Output = Affine;

    #[inline]
    fn mul(self, other: Affine) -> Affine {
        Affine([
            self.0[0] * other.0[0] + self.0[2] * other.0[1],
            self.0[1] * other.0[0] + self.0[3] * other.0[1],
            self.0[0] * other.0[2] + self.0[2] * other.0[3],
            self.0[1] * other.0[2] + self.0[3] * other.0[3],
            self.0[0] * other.0[4] + self.0[2] * other.0[5] + self.0[4],
            self.0[1] * other.0[4] + self.0[3] * other.0[5] + self.0[5],
        ])
    }
}

impl MulAssign for Affine {
    #[inline]
    fn mul_assign(&mut self, other: Affine) {
        *self = self.mul(other);
    }
}

impl Mul<Affine> for f64 {
    type Output = Affine;

    #[inline]
    fn mul(self, other: Affine) -> Affine {
        Affine([
            self * other.0[0],
            self * other.0[1],
            self * other.0[2],
            self * other.0[3],
            self * other.0[4],
            self * other.0[5],
        ])
    }
}

// Conversions to and from mint
#[cfg(feature = "mint")]
impl From<Affine> for mint::ColumnMatrix2x3<f64> {
    #[inline]
    fn from(a: Affine) -> mint::ColumnMatrix2x3<f64> {
        mint::ColumnMatrix2x3 {
            x: mint::Vector2 {
                x: a.0[0],
                y: a.0[1],
            },
            y: mint::Vector2 {
                x: a.0[2],
                y: a.0[3],
            },
            z: mint::Vector2 {
                x: a.0[4],
                y: a.0[5],
            },
        }
    }
}

#[cfg(feature = "mint")]
impl From<mint::ColumnMatrix2x3<f64>> for Affine {
    #[inline]
    fn from(m: mint::ColumnMatrix2x3<f64>) -> Affine {
        Affine([m.x.x, m.x.y, m.y.x, m.y.y, m.z.x, m.z.y])
    }
}

#[cfg(test)]
mod tests {
    use crate::{Affine, Point};
    use std::f64::consts::PI;

    fn assert_near(p0: Point, p1: Point) {
        assert!((p1 - p0).hypot() < 1e-9, "{:?} != {:?}", p0, p1);
    }

    #[test]
    fn affine_basic() {
        let p = Point::new(3.0, 4.0);

        assert_near(Affine::default() * p, p);
        assert_near(Affine::scale(2.0) * p, Point::new(6.0, 8.0));
        assert_near(Affine::rotate(0.0) * p, p);
        assert_near(Affine::rotate(PI / 2.0) * p, Point::new(-4.0, 3.0));
        assert_near(Affine::translate((5.0, 6.0)) * p, Point::new(8.0, 10.0));
    }

    #[test]
    fn affine_mul() {
        let a1 = Affine::new([1.0, 2.0, 3.0, 4.0, 5.0, 6.0]);
        let a2 = Affine::new([0.1, 1.2, 2.3, 3.4, 4.5, 5.6]);

        let px = Point::new(1.0, 0.0);
        let py = Point::new(0.0, 1.0);
        let pxy = Point::new(1.0, 1.0);
        assert_near(a1 * (a2 * px), (a1 * a2) * px);
        assert_near(a1 * (a2 * py), (a1 * a2) * py);
        assert_near(a1 * (a2 * pxy), (a1 * a2) * pxy);
    }
}