1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
// Copyright 2018 the Kurbo Authors
// SPDX-License-Identifier: Apache-2.0 OR MIT

//! Affine transforms.

use core::ops::{Mul, MulAssign};

use crate::{Point, Rect, Vec2};

#[cfg(not(feature = "std"))]
use crate::common::FloatFuncs;

/// A 2D affine transform.
#[derive(Clone, Copy, Debug, PartialEq)]
#[cfg_attr(feature = "schemars", derive(schemars::JsonSchema))]
#[cfg_attr(feature = "serde", derive(serde::Serialize, serde::Deserialize))]
pub struct Affine([f64; 6]);

impl Affine {
    /// The identity transform.
    pub const IDENTITY: Affine = Affine::scale(1.0);

    /// A transform that is flipped on the y-axis. Useful for converting between
    /// y-up and y-down spaces.
    pub const FLIP_Y: Affine = Affine::new([1.0, 0., 0., -1.0, 0., 0.]);

    /// A transform that is flipped on the x-axis.
    pub const FLIP_X: Affine = Affine::new([-1.0, 0., 0., 1.0, 0., 0.]);

    /// Construct an affine transform from coefficients.
    ///
    /// If the coefficients are `(a, b, c, d, e, f)`, then the resulting
    /// transformation represents this augmented matrix:
    ///
    /// ```text
    /// | a c e |
    /// | b d f |
    /// | 0 0 1 |
    /// ```
    ///
    /// Note that this convention is transposed from PostScript and
    /// Direct2D, but is consistent with the
    /// [Wikipedia](https://en.wikipedia.org/wiki/Affine_transformation)
    /// formulation of affine transformation as augmented matrix. The
    /// idea is that `(A * B) * v == A * (B * v)`, where `*` is the
    /// [`Mul`](std::ops::Mul) trait.
    #[inline]
    pub const fn new(c: [f64; 6]) -> Affine {
        Affine(c)
    }

    /// An affine transform representing uniform scaling.
    #[inline]
    pub const fn scale(s: f64) -> Affine {
        Affine([s, 0.0, 0.0, s, 0.0, 0.0])
    }

    /// An affine transform representing non-uniform scaling
    /// with different scale values for x and y
    #[inline]
    pub const fn scale_non_uniform(s_x: f64, s_y: f64) -> Affine {
        Affine([s_x, 0.0, 0.0, s_y, 0.0, 0.0])
    }

    /// An affine transform representing rotation.
    ///
    /// The convention for rotation is that a positive angle rotates a
    /// positive X direction into positive Y. Thus, in a Y-down coordinate
    /// system (as is common for graphics), it is a clockwise rotation, and
    /// in Y-up (traditional for math), it is anti-clockwise.
    ///
    /// The angle, `th`, is expressed in radians.
    #[inline]
    pub fn rotate(th: f64) -> Affine {
        let (s, c) = th.sin_cos();
        Affine([c, s, -s, c, 0.0, 0.0])
    }

    /// An affine transform representing a rotation of `th` radians about `center`.
    ///
    /// See [`Affine::rotate()`] for more info.
    #[inline]
    pub fn rotate_about(th: f64, center: Point) -> Affine {
        let center = center.to_vec2();
        Self::translate(-center)
            .then_rotate(th)
            .then_translate(center)
    }

    /// An affine transform representing translation.
    #[inline]
    pub fn translate<V: Into<Vec2>>(p: V) -> Affine {
        let p = p.into();
        Affine([1.0, 0.0, 0.0, 1.0, p.x, p.y])
    }

    /// An affine transformation representing a skew.
    ///
    /// The `skew_x` and `skew_y` parameters represent skew factors for the
    /// horizontal and vertical directions, respectively.
    ///
    /// This is commonly used to generate a faux oblique transform for
    /// font rendering. In this case, you can slant the glyph 20 degrees
    /// clockwise in the horizontal direction (assuming a Y-up coordinate
    /// system):
    ///
    /// ```
    /// let oblique_transform = kurbo::Affine::skew(20f64.to_radians().tan(), 0.0);
    /// ```
    #[inline]
    pub fn skew(skew_x: f64, skew_y: f64) -> Affine {
        Affine([1.0, skew_y, skew_x, 1.0, 0.0, 0.0])
    }

    /// Create an affine transform that represents reflection about the line `point + direction * t, t in (-infty, infty)`
    ///
    /// # Examples
    ///
    /// ```
    /// # use kurbo::{Point, Vec2, Affine};
    /// # fn assert_near(p0: Point, p1: Point) {
    /// #     assert!((p1 - p0).hypot() < 1e-9, "{p0:?} != {p1:?}");
    /// # }
    /// let point = Point::new(1., 0.);
    /// let vec = Vec2::new(1., 1.);
    /// let map = Affine::reflect(point, vec);
    /// assert_near(map * Point::new(1., 0.), Point::new(1., 0.));
    /// assert_near(map * Point::new(2., 1.), Point::new(2., 1.));
    /// assert_near(map * Point::new(2., 2.), Point::new(3., 1.));
    /// ```
    #[inline]
    #[must_use]
    pub fn reflect(point: impl Into<Point>, direction: impl Into<Vec2>) -> Self {
        let point = point.into();
        let direction = direction.into();

        let n = Vec2 {
            x: direction.y,
            y: -direction.x,
        }
        .normalize();

        // Compute Householder reflection matrix
        let x2 = n.x * n.x;
        let xy = n.x * n.y;
        let y2 = n.y * n.y;
        // Here we also add in the post translation, because it doesn't require any further calc.
        let aff = Affine::new([
            1. - 2. * x2,
            -2. * xy,
            -2. * xy,
            1. - 2. * y2,
            point.x,
            point.y,
        ]);
        aff.pre_translate(-point.to_vec2())
    }

    /// A rotation by `th` followed by `self`.
    ///
    /// Equivalent to `self * Affine::rotate(th)`
    #[inline]
    #[must_use]
    pub fn pre_rotate(self, th: f64) -> Self {
        self * Affine::rotate(th)
    }

    /// A rotation by `th` about `center` followed by `self`.
    ///
    /// Equivalent to `self * Affine::rotate_about(th)`
    #[inline]
    #[must_use]
    pub fn pre_rotate_about(self, th: f64, center: Point) -> Self {
        Affine::rotate_about(th, center) * self
    }

    /// A scale by `scale` followed by `self`.
    ///
    /// Equivalent to `self * Affine::scale(scale)`
    #[inline]
    #[must_use]
    pub fn pre_scale(self, scale: f64) -> Self {
        self * Affine::scale(scale)
    }

    /// A scale by `(scale_x, scale_y)` followed by `self`.
    ///
    /// Equivalent to `self * Affine::scale_non_uniform(scale_x, scale_y)`
    #[inline]
    #[must_use]
    pub fn pre_scale_non_uniform(self, scale_x: f64, scale_y: f64) -> Self {
        self * Affine::scale_non_uniform(scale_x, scale_y)
    }

    /// A translation of `trans` followed by `self`.
    ///
    /// Equivalent to `self * Affine::translate(trans)`
    #[inline]
    #[must_use]
    pub fn pre_translate(self, trans: Vec2) -> Self {
        self * Affine::translate(trans)
    }

    /// `self` followed by a rotation of `th`.
    ///
    /// Equivalent to `Affine::rotate(th) * self`
    #[inline]
    #[must_use]
    pub fn then_rotate(self, th: f64) -> Self {
        Affine::rotate(th) * self
    }

    /// `self` followed by a rotation of `th` about `center`.
    ///
    /// Equivalent to `Affine::rotate_about(th, center) * self`
    #[inline]
    #[must_use]
    pub fn then_rotate_about(self, th: f64, center: Point) -> Self {
        Affine::rotate_about(th, center) * self
    }

    /// `self` followed by a scale of `scale`.
    ///
    /// Equivalent to `Affine::scale(scale) * self`
    #[inline]
    #[must_use]
    pub fn then_scale(self, scale: f64) -> Self {
        Affine::scale(scale) * self
    }

    /// `self` followed by a scale of `(scale_x, scale_y)`.
    ///
    /// Equivalent to `Affine::scale_non_uniform(scale_x, scale_y) * self`
    #[inline]
    #[must_use]
    pub fn then_scale_non_uniform(self, scale_x: f64, scale_y: f64) -> Self {
        Affine::scale_non_uniform(scale_x, scale_y) * self
    }

    /// `self` followed by a translation of `trans`.
    ///
    /// Equivalent to `Affine::translate(trans) * self`
    #[inline]
    #[must_use]
    pub fn then_translate(mut self, trans: Vec2) -> Self {
        self.0[4] += trans.x;
        self.0[5] += trans.y;
        self
    }

    /// Creates an affine transformation that takes the unit square to the given rectangle.
    ///
    /// Useful when you want to draw into the unit square but have your output fill any rectangle.
    /// In this case push the `Affine` onto the transform stack.
    pub fn map_unit_square(rect: Rect) -> Affine {
        Affine([rect.width(), 0., 0., rect.height(), rect.x0, rect.y0])
    }

    /// Get the coefficients of the transform.
    #[inline]
    pub fn as_coeffs(self) -> [f64; 6] {
        self.0
    }

    /// Compute the determinant of this transform.
    pub fn determinant(self) -> f64 {
        self.0[0] * self.0[3] - self.0[1] * self.0[2]
    }

    /// Compute the inverse transform.
    ///
    /// Produces NaN values when the determinant is zero.
    pub fn inverse(self) -> Affine {
        let inv_det = self.determinant().recip();
        Affine([
            inv_det * self.0[3],
            -inv_det * self.0[1],
            -inv_det * self.0[2],
            inv_det * self.0[0],
            inv_det * (self.0[2] * self.0[5] - self.0[3] * self.0[4]),
            inv_det * (self.0[1] * self.0[4] - self.0[0] * self.0[5]),
        ])
    }

    /// Compute the bounding box of a transformed rectangle.
    ///
    /// Returns the minimal `Rect` that encloses the given `Rect` after affine transformation.
    /// If the transform is axis-aligned, then this bounding box is "tight", in other words the
    /// returned `Rect` is the transformed rectangle.
    ///
    /// The returned rectangle always has non-negative width and height.
    pub fn transform_rect_bbox(self, rect: Rect) -> Rect {
        let p00 = self * Point::new(rect.x0, rect.y0);
        let p01 = self * Point::new(rect.x0, rect.y1);
        let p10 = self * Point::new(rect.x1, rect.y0);
        let p11 = self * Point::new(rect.x1, rect.y1);
        Rect::from_points(p00, p01).union(Rect::from_points(p10, p11))
    }

    /// Is this map finite?
    #[inline]
    pub fn is_finite(&self) -> bool {
        self.0[0].is_finite()
            && self.0[1].is_finite()
            && self.0[2].is_finite()
            && self.0[3].is_finite()
            && self.0[4].is_finite()
            && self.0[5].is_finite()
    }

    /// Is this map NaN?
    #[inline]
    pub fn is_nan(&self) -> bool {
        self.0[0].is_nan()
            || self.0[1].is_nan()
            || self.0[2].is_nan()
            || self.0[3].is_nan()
            || self.0[4].is_nan()
            || self.0[5].is_nan()
    }

    /// Compute the singular value decomposition of the linear transformation (ignoring the
    /// translation).
    ///
    /// All non-degenerate linear transformations can be represented as
    ///
    ///  1. a rotation about the origin.
    ///  2. a scaling along the x and y axes
    ///  3. another rotation about the origin
    ///
    /// composed together. Decomposing a 2x2 matrix in this way is called a "singular value
    /// decomposition" and is written `U Σ V^T`, where U and V^T are orthogonal (rotations) and Σ
    /// is a diagonal matrix (a scaling).
    ///
    /// Since currently this function is used to calculate ellipse radii and rotation from an
    /// affine map on the unit circle, we don't calculate V^T, since a rotation of the unit (or
    /// any) circle about its center always results in the same circle. This is the reason that an
    /// ellipse mapped using an affine map is always an ellipse.
    ///
    /// Will return NaNs if the matrix (or equivalently the linear map) is singular.
    ///
    /// First part of the return tuple is the scaling, second part is the angle of rotation (in
    /// radians)
    #[inline]
    pub(crate) fn svd(self) -> (Vec2, f64) {
        let a = self.0[0];
        let a2 = a * a;
        let b = self.0[1];
        let b2 = b * b;
        let c = self.0[2];
        let c2 = c * c;
        let d = self.0[3];
        let d2 = d * d;
        let ab = a * b;
        let cd = c * d;
        let angle = 0.5 * (2.0 * (ab + cd)).atan2(a2 - b2 + c2 - d2);
        let s1 = a2 + b2 + c2 + d2;
        let s2 = ((a2 - b2 + c2 - d2).powi(2) + 4.0 * (ab + cd).powi(2)).sqrt();
        (
            Vec2 {
                x: (0.5 * (s1 + s2)).sqrt(),
                y: (0.5 * (s1 - s2)).sqrt(),
            },
            angle,
        )
    }

    /// Returns the translation part of this affine map (`(self.0[4], self.0[5])`).
    #[inline]
    pub fn translation(self) -> Vec2 {
        Vec2 {
            x: self.0[4],
            y: self.0[5],
        }
    }

    /// Replaces the translation portion of this affine map
    ///
    /// The translation can be seen as being applied after the linear part of the map.
    #[must_use]
    #[inline]
    pub fn with_translation(mut self, trans: Vec2) -> Affine {
        self.0[4] = trans.x;
        self.0[5] = trans.y;
        self
    }
}

impl Default for Affine {
    #[inline]
    fn default() -> Affine {
        Affine::IDENTITY
    }
}

impl Mul<Point> for Affine {
    type Output = Point;

    #[inline]
    fn mul(self, other: Point) -> Point {
        Point::new(
            self.0[0] * other.x + self.0[2] * other.y + self.0[4],
            self.0[1] * other.x + self.0[3] * other.y + self.0[5],
        )
    }
}

impl Mul for Affine {
    type Output = Affine;

    #[inline]
    fn mul(self, other: Affine) -> Affine {
        Affine([
            self.0[0] * other.0[0] + self.0[2] * other.0[1],
            self.0[1] * other.0[0] + self.0[3] * other.0[1],
            self.0[0] * other.0[2] + self.0[2] * other.0[3],
            self.0[1] * other.0[2] + self.0[3] * other.0[3],
            self.0[0] * other.0[4] + self.0[2] * other.0[5] + self.0[4],
            self.0[1] * other.0[4] + self.0[3] * other.0[5] + self.0[5],
        ])
    }
}

impl MulAssign for Affine {
    #[inline]
    fn mul_assign(&mut self, other: Affine) {
        *self = self.mul(other);
    }
}

impl Mul<Affine> for f64 {
    type Output = Affine;

    #[inline]
    fn mul(self, other: Affine) -> Affine {
        Affine([
            self * other.0[0],
            self * other.0[1],
            self * other.0[2],
            self * other.0[3],
            self * other.0[4],
            self * other.0[5],
        ])
    }
}

// Conversions to and from mint
#[cfg(feature = "mint")]
impl From<Affine> for mint::ColumnMatrix2x3<f64> {
    #[inline]
    fn from(a: Affine) -> mint::ColumnMatrix2x3<f64> {
        mint::ColumnMatrix2x3 {
            x: mint::Vector2 {
                x: a.0[0],
                y: a.0[1],
            },
            y: mint::Vector2 {
                x: a.0[2],
                y: a.0[3],
            },
            z: mint::Vector2 {
                x: a.0[4],
                y: a.0[5],
            },
        }
    }
}

#[cfg(feature = "mint")]
impl From<mint::ColumnMatrix2x3<f64>> for Affine {
    #[inline]
    fn from(m: mint::ColumnMatrix2x3<f64>) -> Affine {
        Affine([m.x.x, m.x.y, m.y.x, m.y.y, m.z.x, m.z.y])
    }
}

#[cfg(test)]
mod tests {
    use crate::{Affine, Point, Vec2};
    use std::f64::consts::PI;

    fn assert_near(p0: Point, p1: Point) {
        assert!((p1 - p0).hypot() < 1e-9, "{p0:?} != {p1:?}");
    }

    fn affine_assert_near(a0: Affine, a1: Affine) {
        for i in 0..6 {
            assert!((a0.0[i] - a1.0[i]).abs() < 1e-9, "{a0:?} != {a1:?}");
        }
    }

    #[test]
    fn affine_basic() {
        let p = Point::new(3.0, 4.0);

        assert_near(Affine::default() * p, p);
        assert_near(Affine::scale(2.0) * p, Point::new(6.0, 8.0));
        assert_near(Affine::rotate(0.0) * p, p);
        assert_near(Affine::rotate(PI / 2.0) * p, Point::new(-4.0, 3.0));
        assert_near(Affine::translate((5.0, 6.0)) * p, Point::new(8.0, 10.0));
        assert_near(Affine::skew(0.0, 0.0) * p, p);
        assert_near(Affine::skew(2.0, 4.0) * p, Point::new(11.0, 16.0));
    }

    #[test]
    fn affine_mul() {
        let a1 = Affine::new([1.0, 2.0, 3.0, 4.0, 5.0, 6.0]);
        let a2 = Affine::new([0.1, 1.2, 2.3, 3.4, 4.5, 5.6]);

        let px = Point::new(1.0, 0.0);
        let py = Point::new(0.0, 1.0);
        let pxy = Point::new(1.0, 1.0);
        assert_near(a1 * (a2 * px), (a1 * a2) * px);
        assert_near(a1 * (a2 * py), (a1 * a2) * py);
        assert_near(a1 * (a2 * pxy), (a1 * a2) * pxy);
    }

    #[test]
    fn affine_inv() {
        let a = Affine::new([0.1, 1.2, 2.3, 3.4, 4.5, 5.6]);
        let a_inv = a.inverse();

        let px = Point::new(1.0, 0.0);
        let py = Point::new(0.0, 1.0);
        let pxy = Point::new(1.0, 1.0);
        assert_near(a * (a_inv * px), px);
        assert_near(a * (a_inv * py), py);
        assert_near(a * (a_inv * pxy), pxy);
        assert_near(a_inv * (a * px), px);
        assert_near(a_inv * (a * py), py);
        assert_near(a_inv * (a * pxy), pxy);
    }

    #[test]
    fn reflection() {
        affine_assert_near(
            Affine::reflect(Point::ZERO, (1., 0.)),
            Affine::new([1., 0., 0., -1., 0., 0.]),
        );
        affine_assert_near(
            Affine::reflect(Point::ZERO, (0., 1.)),
            Affine::new([-1., 0., 0., 1., 0., 0.]),
        );
        // y = x
        affine_assert_near(
            Affine::reflect(Point::ZERO, (1., 1.)),
            Affine::new([0., 1., 1., 0., 0., 0.]),
        );

        // no translate
        let point = Point::new(0., 0.);
        let vec = Vec2::new(1., 1.);
        let map = Affine::reflect(point, vec);
        assert_near(map * Point::new(0., 0.), Point::new(0., 0.));
        assert_near(map * Point::new(1., 1.), Point::new(1., 1.));
        assert_near(map * Point::new(1., 2.), Point::new(2., 1.));

        // with translate
        let point = Point::new(1., 0.);
        let vec = Vec2::new(1., 1.);
        let map = Affine::reflect(point, vec);
        assert_near(map * Point::new(1., 0.), Point::new(1., 0.));
        assert_near(map * Point::new(2., 1.), Point::new(2., 1.));
        assert_near(map * Point::new(2., 2.), Point::new(3., 1.));
    }
}