1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
//! Bézier paths (up to cubic).

use std::ops::{Mul, Range};

use arrayvec::ArrayVec;

use crate::{Affine, CubicBez, Line, ParamCurve, ParamCurveArea, ParamCurveArclen,
    ParamCurveExtrema, ParamCurveNearest, QuadBez, Vec2};
use crate::MAX_EXTREMA;
use crate::common::{solve_cubic, solve_quadratic};

/// A path that can Bézier segments up to cubic, possibly with multiple subpaths.
#[derive(Clone, Default)]
pub struct BezPath(Vec<PathEl>);

/// The element of a Bézier path.
///
/// A valid path has `Moveto` at the beginning of each subpath.
#[derive(Clone, Copy)]
pub enum PathEl {
    Moveto(Vec2),
    Lineto(Vec2),
    Quadto(Vec2, Vec2),
    Curveto(Vec2, Vec2, Vec2),
    Closepath,
}

/// A segment of a Bézier path.
#[derive(Clone, Copy)]
pub enum PathSeg {
    Line(Line),
    Quad(QuadBez),
    Cubic(CubicBez),
}

impl BezPath {
    /// Create a new path.
    pub fn new() -> BezPath {
        Default::default()
    }

    /// Push a generic path element onto the path.
    pub fn push(&mut self, el: PathEl) {
        self.0.push(el)
    }

    /// Push a moveto element onto the path.
    pub fn moveto<V: Into<Vec2>>(&mut self, p: V) {
        self.push(PathEl::Moveto(p.into()));
    }

    /// Push a lineto element onto the path.
    pub fn lineto<V: Into<Vec2>>(&mut self, p: V) {
        self.push(PathEl::Lineto(p.into()));
    }

    /// Push a quadto element onto the path.
    pub fn quadto<V: Into<Vec2>>(&mut self, p1: V, p2: V) {
        self.push(PathEl::Quadto(p1.into(), p2.into()));
    }

    /// Push a curveto element onto the path.
    pub fn curveto<V: Into<Vec2>>(&mut self, p1: V, p2: V, p3: V) {
        self.push(PathEl::Curveto(p1.into(), p2.into(), p3.into()));
    }

    /// Push a closepath element onto the path.
    pub fn closepath(&mut self) {
        self.push(PathEl::Closepath);
    }

    /// Get the path elements.
    pub fn elements(&self) -> &[PathEl] {
        &self.0
    }

    /// Iterate over the path segments.
    ///
    /// The iterator returns the index within the path and the segment.
    pub fn segments<'a>(&'a self) -> impl Iterator<Item = (usize, PathSeg)> + 'a {
        BezPathSegs { c: &self.0, ix: 0, start: None, last: None }
    }

    /// Get the segment at the given index.
    pub fn get_seg(&self, ix: usize) -> Option<PathSeg> {
        if ix == 0 || ix >= self.0.len() {
            return None;
        }
        let last = match self.0[ix - 1] {
            PathEl::Moveto(p) => p,
            PathEl::Lineto(p) => p,
            PathEl::Quadto(_, p2) => p2,
            PathEl::Curveto(_, _ , p3) => p3,
            _ => return None,
        };
        match self.0[ix] {
            PathEl::Lineto(p) => Some(PathSeg::Line(Line::new(last, p))),
            PathEl::Quadto(p1, p2) => Some(PathSeg::Quad(QuadBez::new(last, p1, p2))),
            PathEl::Curveto(p1, p2, p3) => Some(PathSeg::Cubic(CubicBez::new(last, p1, p2, p3))),
            PathEl::Closepath => {
                self.0[..ix].iter().rev().find_map(|el| match *el {
                    PathEl::Moveto(start) => Some(PathSeg::Line(Line::new(last, start))),
                    _ => None,
                })
            }
            _ => None
        }
    }

    /// Returns `true` if the path contains no segments.
    pub fn is_empty(&self) -> bool {
        !self.0.iter().any(|el|
            match *el {
                PathEl::Lineto(..) | PathEl::Quadto(..) | PathEl::Curveto(..) => true,
                _ => false,
            }
        )
    }

    /// Apply an affine transform to the path.
    pub fn apply_affine(&mut self, affine: Affine) {
        for el in self.0.iter_mut() {
            *el = affine * (*el);
        }
    }

    /// Compute the total arclength.
    ///
    /// Here, `accuracy` specifies the accuracy for each Bézier segment. At worst,
    /// the total error is `accuracy` times the number of Bézier segments.
    ///
    /// Note: this is one of the methods that could be implemented on an iterator
    /// of `PathEl`, to save allocation.
    pub fn arclen(&self, accuracy: f64) -> f64 {
        self.segments().map(|(_, seg)| seg.arclen(accuracy)).sum()
    }

    /// Compute the total signed area.
    pub fn area(&self) -> f64 {
        self.segments().map(|(_, seg)| seg.signed_area()).sum()
    }

    /// Find the nearest point.
    ///
    /// Panics if path is empty or invalid.
    ///
    /// Returns the index of the element, the parameter within that segment, and
    /// the square of the distance to the point.
    pub fn nearest(&self, p: Vec2, accuracy: f64) -> (usize, f64, f64) {
        let mut best = None;
        for (ix, seg) in self.segments() {
            let (t, r) = seg.nearest(p, accuracy);
            if best.map(|(_, _, r_best)| r < r_best).unwrap_or(true) {
                best = Some((ix, t, r));
            }
        }
        best.unwrap()
    }

    /// Compute the winding number.
    ///
    /// TODO: make sure all the signs are consistent.
    pub fn winding(&self, p: Vec2) -> i32 {
        self.segments().map(|(_, seg)| seg.winding(p)).sum()
    }
}

impl Mul<PathEl> for Affine {
    type Output = PathEl;

    fn mul(self, other: PathEl) -> PathEl {
        match other {
            PathEl::Moveto(p) => PathEl::Moveto(self * p),
            PathEl::Lineto(p) => PathEl::Lineto(self * p),
            PathEl::Quadto(p1, p2) => PathEl::Quadto(self * p1, self * p2),
            PathEl::Curveto(p1, p2, p3) => PathEl::Curveto(self * p1, self * p2, self * p3),
            PathEl::Closepath => PathEl::Closepath,
        }
    }
}

impl Mul<BezPath> for Affine {
    type Output = BezPath;

    fn mul(self, other: BezPath) -> BezPath {
        BezPath(other.0.iter().map(|&el| self * el).collect())
    }
}

struct BezPathSegs<'a> {
    c: &'a [PathEl],
    ix: usize,
    start: Option<Vec2>,
    last: Option<Vec2>,
}

impl<'a> Iterator for BezPathSegs<'a> {
    type Item = (usize, PathSeg);

    fn next(&mut self) -> Option<(usize, PathSeg)> {
        while self.ix < self.c.len() {
            let ix = self.ix;
            let el = self.c[ix];
            self.ix += 1;
            match el {
                PathEl::Moveto(p) => {
                    self.start = Some(p);
                    self.last = Some(p);
                }
                PathEl::Lineto(p) => {
                    let seg = PathSeg::Line(Line::new(self.last.unwrap(), p));
                    self.last = Some(p);
                    return Some((ix, seg));
                }
                PathEl::Quadto(p1, p2) => {
                    let seg = PathSeg::Quad(QuadBez::new(self.last.unwrap(), p1, p2));
                    self.last = Some(p2);
                    return Some((ix, seg));
                }
                PathEl::Curveto(p1, p2, p3) => {
                    let seg = PathSeg::Cubic(CubicBez::new(self.last.unwrap(), p1, p2, p3));
                    self.last = Some(p3);
                    return Some((ix, seg));
                }
                PathEl::Closepath => {
                    let last = self.last.take();
                    let start = self.start.take();
                    if last != start {
                        let seg = PathSeg::Line(Line::new(last.unwrap(), start.unwrap()));
                        return Some((ix, seg));
                    }
                }
            }
        }
        None
    }
}

impl ParamCurve for PathSeg {
    fn eval(&self, t: f64) -> Vec2 {
        match *self {
            PathSeg::Line(line) => line.eval(t),
            PathSeg::Quad(quad) => quad.eval(t),
            PathSeg::Cubic(cubic) => cubic.eval(t),
        }
    }

    fn subsegment(&self, range: Range<f64>) -> PathSeg {
        match *self {
            PathSeg::Line(line) => PathSeg::Line(line.subsegment(range)),
            PathSeg::Quad(quad) => PathSeg::Quad(quad.subsegment(range)),
            PathSeg::Cubic(cubic) => PathSeg::Cubic(cubic.subsegment(range)),
        }
    }
}

impl ParamCurveArclen for PathSeg {
    fn arclen(&self, accuracy: f64) -> f64 {
        match *self {
            PathSeg::Line(line) => line.arclen(accuracy),
            PathSeg::Quad(quad) => quad.arclen(accuracy),
            PathSeg::Cubic(cubic) => cubic.arclen(accuracy),
        }
    }
}

impl ParamCurveArea for PathSeg {
    fn signed_area(&self) -> f64 {
        match *self {
            PathSeg::Line(line) => line.signed_area(),
            PathSeg::Quad(quad) => quad.signed_area(),
            PathSeg::Cubic(cubic) => cubic.signed_area(),
        }
    }
}

impl ParamCurveNearest for PathSeg {
    fn nearest(&self, p: Vec2, accuracy: f64) -> (f64, f64) {
        match *self {
            PathSeg::Line(line) => line.nearest(p, accuracy),
            PathSeg::Quad(quad) => quad.nearest(p, accuracy),
            PathSeg::Cubic(cubic) => cubic.nearest(p, accuracy),
        }        
    }
}

impl ParamCurveExtrema for PathSeg {
    fn extrema(&self) -> ArrayVec<[f64; MAX_EXTREMA]> {
        match *self {
            PathSeg::Line(line) => line.extrema(),
            PathSeg::Quad(quad) => quad.extrema(),
            PathSeg::Cubic(cubic) => cubic.extrema(),
        }        
    }
}

impl PathSeg {
    // Assumes split at extrema.
    fn winding_inner(&self, p: Vec2) -> i32 {
        let start = self.start();
        let end = self.end();
        let sign = if end.y > start.y {
            if p.y < start.y || p.y >= end.y { return 0; }
            1
        } else if end.y < start.y {
            if p.y < end.y || p.y >= start.y { return 0; }
            -1
        } else {
            return 0;
        };
        match *self {
            PathSeg::Line(_line) => {
                if p.x < start.x.min(end.x) { return 0; }
                if p.x >= start.x.max(end.x) { return sign; }
                // line equation ax + by = c
                let a = end.y - start.y;
                let b = start.x - end.x;
                let c = a * start.x + b * start.y;
                if (a * p.x + b * p.y - c) * (sign as f64) >= 0.0 { sign } else { 0 }
            }
            PathSeg::Quad(quad) => {
                let p1 = quad.p1;
                if p.x < start.x.min(end.x).min(p1.x) { return 0; }
                if p.x >= start.x.max(end.x).max(p1.x) { return sign; }
                let a = end.y - 2.0 * p1.y + start.y;
                let b = 2.0 * (p1.y - start.y);
                let c = start.y - p.y;
                for t in solve_quadratic(c, b, a) {
                    if t >= 0.0 && t <= 1.0 {
                        let x = quad.eval(t).x;
                        if p.x >= x { return sign; } else { return 0; }
                    }
                }
                0
            }
            PathSeg::Cubic(cubic) => {
                let p1 = cubic.p1;
                let p2 = cubic.p2;
                if p.x < start.x.min(end.x).min(p1.x).min(p2.x) { return 0; }
                if p.x >= start.x.max(end.x).max(p1.x).max(p2.x) { return sign; }
                let a = end.y - 3.0 * p2.y + 3.0 * p1.y - start.y;
                let b = 3.0 * (p2.y - 2.0 * p1.y + start.y);
                let c = 3.0 * (p1.y - start.y);
                let d = start.y - p.y;
                for t in solve_cubic(d, c, b, a) {
                    if t >= 0.0 && t <= 1.0 {
                        let x = cubic.eval(t).x;
                        if p.x >= x { return sign; } else { return 0; }
                    }
                }
                0
            }
        }
    }

    /// Compute the winding number contribution of a single segment.
    ///
    /// Cast a ray to the left and count intersections.
    fn winding(&self, p: Vec2) -> i32 {
        self.extrema_ranges().into_iter().map(|range|
            self.subsegment(range).winding_inner(p)).sum()
    }
}