1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
//! Koit is a simple, asynchronous, pure-Rust, structured, embedded database.
//!
//! # Examples
//!
//! ```
//! use std::default::Default;
//!
//! use koit::{FileDatabase, format::Json};
//! use serde::{Deserialize, Serialize};
//!
//! #[derive(Default, Deserialize, Serialize)]
//! struct Data {
//!     cats: u64,
//!     yaks: u64,
//! }
//!
//! #[tokio::main]
//! async fn main() -> Result<(), Box<dyn std::error::Error>> {
//!     let db = FileDatabase::<Data, Json>::load_from_path_or_default("./db.json").await?;
//!   
//!     db.write(|data| {
//!         data.cats = 10;
//!         data.yaks = 32;
//!     }).await;
//!     
//!     assert_eq!(db.read(|data| data.cats + data.yaks).await, 42);
//!
//!     db.save().await?;
//!
//!     Ok(())
//! }
//! ```
//!
//! # Features
//!
//! Koit comes with a [file-backed database](crate::FileDatabase) and [JSON](crate::format::Json)
//! and [Bincode](crate::format::Bincode) formatters. You can also define your own storage
//! [format](crate::format) or [backend](crate::backend).
//!
//! Note that the file-backed database requires the Tokio 0.3 runtime to function.

#![cfg_attr(docsrs, feature(doc_cfg))]

use std::future::Future;
use std::marker::PhantomData;
use tokio::sync::{Mutex, RwLock};

mod error;
pub use error::KoitError;

pub mod backend;
pub use backend::Backend;

pub mod format;
pub use format::Format;

/// The Koit database.
///
/// The database provides reading, writing, saving and reloading functionality.
/// It uses a reader-writer lock on the internal data structure, allowing
/// concurrent access by readers, while writers are given exclusive access.
///
/// It requires a [`Format`](crate::format::Format) marker type
#[derive(Debug)]
pub struct Database<D, B, F> {
    data: RwLock<D>,
    backend: Mutex<B>,
    _format: PhantomData<F>,
}

impl<D, B, F> Database<D, B, F>
where
    B: Backend,
    F: Format<D>,
{
    /// Create a database from its constituents.
    pub fn from_parts(data: D, backend: B) -> Self {
        Self {
            data: RwLock::new(data),
            backend: Mutex::new(backend),
            _format: PhantomData,
        }
    }

    /// Write to the data contained in the database.  This gives exclusive access to the underlying
    /// data structure. The value your closure returns will be passed on as the return value of this
    /// function.
    ///
    /// This write-locks the data structure.
    pub async fn write<T, R>(&self, task: T) -> R
    where
        T: FnOnce(&mut D) -> R,
    {
        let mut data = self.data.write().await;
        task(&mut data)
    }

    /// Same as [`crate::Database::write`], except the task returns a future.
    pub async fn write_and_then<T, Fut, R>(&self, task: T) -> R
    where
        T: FnOnce(&mut D) -> Fut,
        Fut: Future<Output = R>,
    {
        let mut data = self.data.write().await;
        task(&mut data).await
    }

    /// Read the data contained in the database. Many readers can read in parallel.
    /// The value your closure returns will be passed on as the return value of this function.
    ///
    /// This read-locks the data structure.
    pub async fn read<T, R>(&self, task: T) -> R
    where
        T: FnOnce(&D) -> R,
    {
        let data = self.data.read().await;
        task(&data)
    }

    /// Same as [`crate::Database::read`], except the task returns a future.
    pub async fn read_and_then<T, Fut, R>(&self, task: T) -> R
    where
        T: FnOnce(&D) -> Fut,
        Fut: Future<Output = R>,
    {
        let data = self.data.read().await;
        task(&data).await
    }

    /// Replace the actual data in the database by the given data in the parameter, returning the
    /// old data.
    ///
    /// This write-locks the data structure.
    pub async fn replace(&self, data: D) -> D {
        self.write(|actual_data| std::mem::replace(actual_data, data))
            .await
    }

    /// Returns a reference to the underlying data lock.
    ///
    /// It is recommended to use the `read` and `write` methods instead of this, to ensure
    /// locks are only held for as long as needed.
    ///
    /// # Examples
    ///
    /// ```
    /// use koit::{Database, format::Json, backend::Memory};
    ///
    /// type Messages = Vec<String>;
    /// let db: Database<_, _, Json> = Database::from_parts(1, Memory::default());
    ///
    /// futures::executor::block_on(async move {
    ///     let data_lock = db.get_data_lock();
    ///     let mut data = data_lock.write().await;
    ///     *data = 42;
    ///     drop(data);
    ///
    ///     db.read(|n| assert_eq!(*n, 42)).await;
    /// });
    /// ```
    pub fn get_data_lock(&self) -> &RwLock<D> {
        &self.data
    }

    /// Returns a mutable reference to the underlying data.
    ///
    /// This borrows `Database` mutably; no locking takes place.
    ///
    /// # Examples
    ///
    /// ```
    /// use koit::{Database, format::Json, backend::Memory};
    ///
    /// let mut db: Database<_, _, Json> = Database::from_parts(1, Memory::default());
    ///
    /// let n = db.get_data_mut();
    /// *n += 41;
    ///
    /// futures::executor::block_on(db.read(|n| assert_eq!(*n, 42)));
    /// ```
    pub fn get_data_mut(&mut self) -> &mut D {
        self.data.get_mut()
    }

    /// Flush the data contained in the database to the backend.
    ///
    /// This read-locks the data structure.
    ///
    /// # Errors
    ///
    /// - If the data in the database failed to be encoded by the format, an error variant is returned.
    /// - If the bytes failed to be written to the backend, an error variant is returned. This may mean
    /// the backend is now corrupted.
    ///
    /// # Panics
    ///
    /// Some back-ends (such as [`crate::backend::File`]) might panic on some async runtimes.
    pub async fn save(&self) -> Result<(), KoitError> {
        let mut backend = self.backend.lock().await;
        let data = self.data.read().await;
        backend
            .write(F::to_bytes(&data).map_err(|err| KoitError::ToFormat(err.into()))?)
            .await
            .map_err(|err| KoitError::BackendWrite(err.into()))?;
        Ok(())
    }

    /// Load data from the backend.
    async fn load_from_backend(&self) -> Result<D, KoitError> {
        let mut backend = self.backend.lock().await;
        let bytes = backend
            .read()
            .await
            .map_err(|err| KoitError::BackendRead(err.into()))?;
        Ok(F::from_bytes(bytes).map_err(|err| KoitError::FromFormat(err.into()))?)
    }

    /// Update this database with data from the backend, returning the old data.
    ///
    /// This will write-lock the internal data structure.
    ///
    /// # Errors
    ///
    /// - If the bytes from teh backend failed to be decoded by the format, an error variant is returned.
    /// - If the bytes failed to be read by the backend, an error variant is returned.
    ///
    /// # Panics
    ///
    /// Some back-ends (such as [`crate::backend::File`]) might panic on some async runtimes.
    pub async fn reload(&self) -> Result<D, KoitError> {
        let new_data = self.load_from_backend().await?;
        Ok(self.replace(new_data).await)
    }

    /// Consume the database and return its data and backend.
    pub fn into_parts(self) -> (D, B) {
        (self.data.into_inner(), self.backend.into_inner())
    }
}

/// A file-backed database.
///
/// Note: this requires its futures to be executed on the Tokio 0.3 runtime.
#[cfg(feature = "file-backend")]
#[cfg_attr(docsrs, doc(cfg(feature = "file-backend")))]
pub type FileDatabase<D, F> = Database<D, backend::File, F>;

#[cfg(feature = "file-backend")]
impl<D, F> FileDatabase<D, F>
where
    F: Format<D>,
{
    /// Construct the file-backed database from the given path. This attempts to load data
    /// from the given file.
    ///
    /// # Errors
    /// If the file cannot be read, or the [formatter](crate::format::Format) cannot decode the data,
    /// an error variant will be returned.
    pub async fn load_from_path<P>(path: P) -> Result<Self, KoitError>
    where
        P: AsRef<std::path::Path>,
    {
        let mut backend = backend::File::from_path(path)
            .await
            .map_err(|err| KoitError::BackendCreation(err.into()))?;

        let bytes = backend
            .read()
            .await
            .map_err(|err| KoitError::BackendRead(err.into()))?;
        let data = F::from_bytes(bytes).map_err(|err| KoitError::FromFormat(err.into()))?;

        Ok(Database {
            data: RwLock::new(data),
            backend: Mutex::new(backend),
            _format: PhantomData,
        })
    }

    /// Construct the file-backed database from the given path. If the file does not exist,
    /// the file is created. Then `factory` is called and its return value is used as the initial value.
    /// This data is immediately and saved to file.
    pub async fn load_from_path_or_else<P, T>(path: P, factory: T) -> Result<Self, KoitError>
    where
        P: AsRef<std::path::Path>,
        T: FnOnce() -> D,
    {
        let (mut backend, exists) = backend::File::from_path_or_create(path)
            .await
            .map_err(|e| KoitError::BackendCreation(e.into()))?;

        let data = if exists {
            let bytes = backend
                .read()
                .await
                .map_err(|err| KoitError::BackendRead(err.into()))?;
            F::from_bytes(bytes).map_err(|err| KoitError::FromFormat(err.into()))?
        } else {
            factory()
        };

        let db = Database {
            data: RwLock::new(data),
            backend: Mutex::new(backend),
            _format: PhantomData,
        };

        db.save().await?;
        Ok(db)
    }

    /// Same as `load_from_path_or_else`, except it uses [`Default`](`std::default::Default`) instead of a factory.
    pub async fn load_from_path_or_default<P>(path: P) -> Result<Self, KoitError>
    where
        P: AsRef<std::path::Path>,
        D: std::default::Default,
    {
        Self::load_from_path_or_else(path, || std::default::Default::default()).await
    }
}