1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
use crate::arrayadapter::ArrayAdapter;
use core::ops::{AddAssign, Div, Sub};
use num_traits::{Signed, Zero};
use std::convert::From;

/// Compute the Silhouette of a strict partitional clustering.
///
/// The Silhouette, proposed by Peter Rousseeuw in 1987, is a popular internal
/// evaluation measure for clusterings. Although it is defined on arbitary metrics,
/// it is most appropriate for evaluating "spherical" clusters, as it expects objects
/// to be closer to all members of its own cluster than to members of other clusters.
///
/// Because of the additional requirement of a division operator, this implementation
/// currently always returns a float result, and accepts only input distances that can be
/// converted into floats.
///
/// * type `M` - matrix data type such as `ndarray::Array2` or `kmedoids::arrayadapter::LowerTriangle`
/// * type `N` - number data type such as `u32` or `f64`
/// * type `L` - number data type such as `f64` for the cost (use a float type)
/// * `mat` - a pairwise distance matrix
/// * `assi` - the cluster assignment
/// * `samples` - whether to keep the individual samples, or not
///
/// returns a tuple containing:
/// * the average silhouette
/// * the individual silhouette values (empty if `samples = false`)
///
/// ## Panics
///
/// * panics when the dissimilarity matrix is not square
///
/// ## Example
/// Given a dissimilarity matrix of size 4 x 4, use:
/// ```
/// let data = ndarray::arr2(&[[0,1,2,3],[1,0,4,5],[2,4,0,6],[3,5,6,0]]);
/// let mut meds = kmedoids::random_initialization(4, 2, &mut rand::thread_rng());
/// let (loss, assi, n_iter): (f64, _, _) = kmedoids::alternating(&data, &mut meds, 100);
/// let (sil, _): (f64, _) = kmedoids::silhouette(&data, &assi, false);
/// println!("Silhouette is: {}", sil);
/// ```
pub fn silhouette<M, N, L>(mat: &M, assi: &[usize], samples: bool) -> (L, Vec<L>)
where
	N: Zero + PartialOrd + Copy,
	L: AddAssign
		+ Div<Output = L>
		+ Sub<Output = L>
		+ Signed
		+ Zero
		+ PartialOrd
		+ Copy
		+ From<N>
		+ From<u32>,
	M: ArrayAdapter<N>,
{
	assert!(mat.is_square(), "Dissimilarity matrix is not square");
	let mut sil = if samples {
		vec![L::zero(); assi.len()]
	} else {
		vec![L::zero(); 0]
	};
	let mut lsum: L = L::zero();
	let mut buf = Vec::<(u32, L)>::new();
	for (i, &ai) in assi.iter().enumerate() {
		buf.clear();
		for (j, &aj) in assi.iter().enumerate() {
			while aj >= buf.len() {
				buf.push((0, L::zero()));
			}
			if i != j {
				buf[aj].0 += 1;
				buf[aj].1 += mat.get(i, j).into();
			}
		}
		if buf.len() == 1 {
			return (L::zero(), sil);
		}
		let s = if buf[ai].0 > 0 {
			let a = checked_div(buf[ai].1, buf[ai].0.into());
			let mut tmp = buf
				.iter()
				.enumerate()
				.filter(|&(i, _)| i != ai)
				.map(|(_, p)| checked_div(p.1, p.0.into()));
			// Ugly hack to get the min():
			let tmp2 = tmp.next().unwrap_or_else(L::zero);
			let b = tmp.fold(tmp2, |x, y| if y < x { y } else { x });
			checked_div(b - a, if a > b { a } else { b })
		} else {
			L::zero() // singleton
		};
		if samples {
			sil[i] = s;
		}
		lsum += s;
	}
	if samples {
		assert_eq!(sil.len(), assi.len(), "Length not as expected.");
	}
	(lsum.div((assi.len() as u32).into()), sil)
}

/// Compute the Medoid Silhouette of a clustering.
///
/// The Medoid Silhouette is an approximation to the original Silhouette where the
/// distance to the cluster medoid is used instead of the average distance, hence reducing
/// the run time from O(N²) to O(Nk). Here we assume that every object is assigned the
/// nearest cluster, and hence only a distance matrix and a list of medoids is given.
///
/// Because of the additional requirement of a division operator, this implementation
/// currently always returns a float result, and accepts only input distances that can be
/// converted into floats.
///
/// TODO: allow using N x k distance matrixes, too.
///
/// * type `M` - matrix data type such as `ndarray::Array2` or `kmedoids::arrayadapter::LowerTriangle`
/// * type `N` - number data type such as `u32` or `f64`
/// * type `L` - number data type such as `f64` for the cost (use a float type)
/// * `mat` - a pairwise distance matrix
/// * `meds` - the medoid list
/// * `samples` - whether to keep the individual samples, or not
///
/// returns a tuple containing:
/// * the average medoid silhouette
/// * the individual medoid silhouette values (empty if `samples = false`)
///
/// ## Panics
///
/// * panics when the dissimilarity matrix is not square
///
/// ## Example
/// Given a dissimilarity matrix of size 4 x 4, use:
/// ```
/// let data = ndarray::arr2(&[[0,1,2,3],[1,0,4,5],[2,4,0,6],[3,5,6,0]]);
/// let mut meds = kmedoids::random_initialization(4, 2, &mut rand::thread_rng());
/// let (loss, assi, n_iter): (f64, _, _) = kmedoids::alternating(&data, &mut meds, 100);
/// let (sil, _): (f64, _) = kmedoids::medoid_silhouette(&data, &meds, false);
/// println!("Silhouette is: {}", sil);
/// ```
pub fn medoid_silhouette<M, N, L>(mat: &M, meds: &[usize], samples: bool) -> (L, Vec<L>)
where
	N: Zero + PartialOrd + Copy,
	L: AddAssign
		+ Div<Output = L>
		+ Sub<Output = L>
		+ Signed
		+ Zero
		+ PartialOrd
		+ Copy
		+ From<N>
		+ From<u32>,
	M: ArrayAdapter<N>,
{
	let (n, k) = (mat.len(), meds.len());
	assert!(mat.is_square(), "Dissimilarity matrix is not square");
	assert!(n <= u32::MAX as usize, "N is too large");
	let mut sil = vec![L::one(); if samples { n } else { 0 }];
	if k == 1 { return (L::one(), sil); } // not really well-defined
	assert!(k <= n, "invalid k, must be over 1 and at most N");
	let mut loss = L::zero();
	for i in 0..n {
		let (d1, d2) = (mat.get(i, meds[0]), mat.get(i, meds[1]));
		let mut best = if d1 < d2 { (d1, d2) } else { (d2, d1) };
		for &m in meds.iter().skip(2) {
			let d = mat.get(i, m);
			if d < best.0 {
				best = (d, best.0);
			}
			else if d < best.1 {
				best = (best.0, d);
			}
		}
		if !N::is_zero(&best.0) {
			let s = <L as From<N>>::from(best.0) / <L as From<N>>::from(best.1);
			if samples { sil[i] = L::one() - s; }
			loss += s;
		}
	}
	loss = L::one() - loss / <L as From<u32>>::from(n as u32);
	(loss, sil)
}

// helper function, returns 0 on division by 0
pub(crate) fn checked_div<L>(x: L, y: L) -> L
where
	L: Div<Output = L> + Zero + Copy + PartialOrd,
{
	if y > L::zero() {
		x.div(y)
	} else {
		L::zero()
	}
}