1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
use crate::{helpers, memory::*, AbortStrategy};
use std::cell::RefCell;
use rayon::prelude::*;
use rand::prelude::*;
use packed_simd::{Simd, SimdArray};

pub type InitDoneCallbackFn<'a, T> = &'a dyn Fn(&KMeansState<T>);
pub type IterationDoneCallbackFn<'a, T> = &'a dyn Fn(&KMeansState<T>, usize, T);

/// This is a structure holding various configuration options for the a k-means calculations, such as
/// the random number generator to use, or a couple of callbacks, that can be set to get status information from
/// a running k-means calculation.
/// 
/// For a more detailed information about all possible options, have a look at [`KMeansConfigBuilder`].
pub struct KMeansConfig<'a, T: Primitive> {
    /// Callback that is called, when the initialization phase finished
    /// ## Arguments
    /// - **state**: Current [`KMeansState`] after the initialization
    pub(crate) init_done: InitDoneCallbackFn<'a, T>,
    /// Callback that is called after each iteration
    /// ## Arguments
    /// - **state**: Current[`KMeansState`] after the iteration
    /// - **iteration_id**: Number of the current iteration
    /// - **distsum**: New distance sum (**state** contains the distsum from the previous iteration)
    pub(crate) iteration_done: IterationDoneCallbackFn<'a, T>,
    /// Random number generator to use
    pub(crate) rnd: Box<RefCell<dyn RngCore>>,
    /// The abort-strategy to use for the running calculation
    pub(crate) abort_strategy: AbortStrategy<T>
}
impl<'a, T: Primitive> Default for KMeansConfig<'a, T> {
    fn default() -> Self {
        Self {
            init_done: &|_| {},
            iteration_done: &|_,_,_| {},
            rnd: Box::new(RefCell::new(rand::thread_rng())),
            abort_strategy: AbortStrategy::<T>::NoImprovement{
                threshold: T::from(0.0005).unwrap()
            }
        }
    }
}
impl<'a, T: Primitive> KMeansConfig<'a, T> {
    /// Use the [`KMeansConfigBuilder`] to build a [`KMeansConfig`] instance.
    pub fn build() -> KMeansConfigBuilder<'a, T> {
        KMeansConfigBuilder { config: KMeansConfig::default() }
    }
}
impl<'a, T: Primitive> std::fmt::Debug for KMeansConfig<'a, T> {
    fn fmt(&self, _: &mut std::fmt::Formatter<'_>) -> std::fmt::Result { Ok(()) }
}

pub struct KMeansConfigBuilder<'a, T: Primitive> {
    config: KMeansConfig<'a, T>
}
impl<'a, T: Primitive> KMeansConfigBuilder<'a, T> {
    /// Set the callback that should be called after the centroid initialization, before the iteration starts.
    pub fn init_done(mut self, init_done: InitDoneCallbackFn<'a, T>) -> Self {
        self.config.init_done = init_done; self
    }
    /// Set the callback that should be called after each iteration during a running k-means calculation.
    pub fn iteration_done(mut self, iteration_done: IterationDoneCallbackFn<'a, T>) -> Self {
        self.config.iteration_done = iteration_done; self
    }
    /// Set the random number generator that should be used in the k-means calculation.
    /// Use a seeded generator for deterministically repeatable results.
    pub fn random_generator<R: RngCore + 'static>(mut self, rnd: R) -> Self {
        self.config.rnd = Box::new(RefCell::new(rnd)); self
    }
    /// Set the abort-strategy to use during a running k-means calculation. For more information,
    /// see documentation of [`AbortStrategy`].
    /// ## Default
    /// [`AbortStrategy::NoImprovement`] `{ threshold: 0.0005 }`
    pub fn abort_strategy(mut self, abort_strategy: AbortStrategy<T>) -> Self {
        self.config.abort_strategy = abort_strategy; self
    }
    /// Return the internally built configuration structure.
    pub fn build(self) -> KMeansConfig<'a, T> { self.config }
}


/// This is the internally used data-structure, storing the current state during calculation, as
/// well as the final result, as returned by the API.
/// All mutations are done in this structure, making [`KMeans`] immutable, and therefore allowing
/// it to be used in parallel, without having to duplicate the input-data.
/// 
/// ## Generics
/// - **T**: Underlying primitive type that was used for the calculation
/// 
/// ## Fields
/// - **k**: The amount of clusters that were requested when calculating this k-means result
/// - **distsum**: The total sum of (squared) distances from all samples to their respective centroids
/// - **centroids**: Calculated cluster centers [row-major] = [<centroid0>,<centroid1>,<centroid2>,...]
/// - **centroid_frequency**: Amount of samples in each centroid
/// - **assignments**: Vector mapping each sample to its respective nearest cluster
/// - **centroid_distances**: Vector containing each sample's (squared) distance to its centroid
#[derive(Clone, Debug)]
pub struct KMeansState<T: Primitive> {
    pub k: usize,
    pub distsum: T,
    pub centroids: Vec<T>,
    pub centroid_frequency: Vec<usize>,
    pub assignments: Vec<usize>,
    pub centroid_distances: Vec<T>,

    pub(crate) sample_dims: usize
}
impl<T: Primitive> KMeansState<T> {
    pub(crate) fn new(sample_cnt: usize, sample_dims: usize, k: usize) -> Self {
        Self {
            k,
            distsum: T::zero(),
            centroids: AlignedFloatVec::new(sample_dims * k),
            centroid_frequency: vec![0usize;k],
            assignments: vec![0usize;sample_cnt],
            centroid_distances: vec![T::infinity();sample_cnt],
            sample_dims
        }
    }
    pub(crate) fn set_centroid_from_iter(&mut self, idx: usize, src: impl Iterator<Item = T>) {
        self.centroids.iter_mut().skip(self.sample_dims * idx).take(self.sample_dims)
                .zip(src)
                .for_each(|(c,s)| *c = s);
    }

    pub(crate) fn remove_padding(mut self, sample_dims: usize) -> Self {
        if self.sample_dims != sample_dims { // Datastructure was padded -> undo
            self.centroids = self.centroids.chunks_exact(self.sample_dims)
                .map(|chunk| chunk.iter().cloned().take(sample_dims)).flatten().collect();
        }
        self
    }
}




/// Entrypoint of this crate's API-Surface.
/// 
/// Create an instance of this struct, giving the samples you want to operate on. The primitive type
/// of the passed samples array will be the type used internaly for all calculations, as well as the result
/// as stored in the returned [`KMeansState`] structure.
/// 
/// ## Supported variants
/// - k-Means clustering (Lloyd) [`KMeans::kmeans_lloyd`]
/// - Mini-Batch k-Means clustering [`KMeans::kmeans_minibatch`]
/// 
/// ## Supported initialization methods
/// - K-Mean++ [`KMeans::init_kmeanplusplus`]
/// - Random-Sample [`KMeans::init_random_sample`]
/// - Random-Partition [`KMeans::init_random_partition`]
pub struct KMeans<T> where T: Primitive, [T;LANES]: SimdArray, Simd<[T;LANES]>: SimdWrapper<T> {
    pub(crate) sample_cnt: usize,
    pub(crate) sample_dims: usize,
    pub(crate) p_sample_dims: usize,
    pub(crate) p_samples: Vec<T>
}
impl<T> KMeans<T> where T: Primitive, [T;LANES]: SimdArray, Simd<[T;LANES]>: SimdWrapper<T> {
    /// Create a new instance of the [`KMeans`] structure.
    /// 
    /// ## Arguments
    /// - **samples**: Vector of samples [row-major] = [<sample0>,<sample1>,<sample2>,...]
    /// - **sample_cnt**: Amount of samples, contained in the passed **samples** vector
    /// - **sample_dims**: Amount of dimensions each sample from the **sample** vector has
    pub fn new(samples: Vec<T>, sample_cnt: usize, sample_dims: usize) -> Self {
        assert!(samples.len() == sample_cnt * sample_dims);
        let p_sample_dims = helpers::multiple_roundup(sample_dims, LANES);
       
        // Recopy into new, properly aligned + padded buffer
        let mut aligned_samples = AlignedFloatVec::new(sample_cnt * p_sample_dims);
        if p_sample_dims == sample_dims {
            aligned_samples.copy_from_slice(&samples);
        } else {
            for s in 0..sample_cnt {
                for d in 0..sample_dims {
                    aligned_samples[s * p_sample_dims + d] = samples[s * sample_dims + d];
                }
            }
        };

        Self {
            sample_cnt: sample_cnt,
            sample_dims: sample_dims,
            p_sample_dims,
            p_samples: aligned_samples
        }
    }


    pub(crate) fn update_centroid_distances(&self, state: &mut KMeansState<T>) {
        let centroids = &state.centroids;

		// TODO: Switch to par_chunks_exact, when that is merged in rayon (https://github.com/rayon-rs/rayon/pull/629).
		// par_chunks() works, because sample-dimensions are manually padded, so that there is no remainder

        // manually calculate work-packet size, because rayon does not do static scheduling (which is more apropriate here)
        let work_packet_size = self.p_samples.len() / self.p_sample_dims / rayon::current_num_threads();
        self.p_samples.par_chunks(self.p_sample_dims)
            .with_min_len(work_packet_size)
            .zip(state.assignments.par_iter().cloned())
            .zip(state.centroid_distances.par_iter_mut())
            .for_each(|((s, assignment), centroid_dist)| {
                let centroid = centroids.chunks_exact(self.p_sample_dims).skip(assignment).next().unwrap();
                *centroid_dist = s.chunks_exact(LANES).map(|i| unsafe { Simd::<[T;LANES]>::from_slice_aligned_unchecked(i) })
                    .zip(centroid.chunks_exact(LANES).map(|i| unsafe { Simd::<[T;LANES]>::from_slice_aligned_unchecked(i) }))
                        .map(|(sp,cp)| sp - cp)         // <sample> - <centroid>
                        .map(|v| v * v)                 // <vec_components> ^2
                        .sum::<Simd::<[T;LANES]>>()     // sum(<vec_components>^2)
                        .sum();
            });
    }

    pub(crate) fn update_cluster_assignments(&self, state: &mut KMeansState<T>, limit_k: Option<usize>) {
        let centroids = &state.centroids;
        let k = limit_k.unwrap_or(state.k);

		// TODO: Switch to par_chunks_exact, when that is merged in rayon (https://github.com/rayon-rs/rayon/pull/629).
		// par_chunks() works, because sample-dimensions are manually padded, so that there is no remainder

        // manually calculate work-packet size, because rayon does not do static scheduling (which is more apropriate here)
        let work_packet_size = self.p_samples.len() / self.p_sample_dims / rayon::current_num_threads();
        self.p_samples.par_chunks(self.p_sample_dims)
            .with_min_len(work_packet_size)
            .zip(state.assignments.par_iter_mut())
            .zip(state.centroid_distances.par_iter_mut())
            .for_each(|((s, assignment), centroid_dist)| {
                let (best_idx, best_dist) = centroids.chunks_exact(self.p_sample_dims).take(k)
                    .map(|c| {
                        s.chunks_exact(LANES).map(|i| unsafe { Simd::<[T;LANES]>::from_slice_aligned_unchecked(i) })
                            .zip(c.chunks_exact(LANES).map(|i| unsafe { Simd::<[T;LANES]>::from_slice_aligned_unchecked(i) }))
                                .map(|(sp,cp)| sp - cp)         // <sample> - <centroid>
                                .map(|v| v * v)                 // <vec_components> ^2
                                .sum::<Simd::<[T;LANES]>>()     // sum(<vec_components>^2)
                                .sum()
                    }).enumerate()
                    .min_by(|(_,d0), (_,d1)| d0.partial_cmp(d1).unwrap()).unwrap();
                *assignment = best_idx;
                *centroid_dist = best_dist;
            });
    }

    pub(crate) fn update_cluster_frequencies(&self, assignments: &[usize], centroid_frequency: &mut[usize]) -> usize {
        centroid_frequency.iter_mut().for_each(|v| *v = 0);
        let mut used_centroids_cnt = 0;
        assignments.iter().cloned()
            .for_each(|centroid_id| {
                if centroid_frequency[centroid_id] == 0 {
                    used_centroids_cnt += 1; // Count the amount of centroids with more than 0 samples
                }
                centroid_frequency[centroid_id] += 1;
            });
        used_centroids_cnt
    }



    /// Normal K-Means algorithm implementation. This is the same algorithm as implemented in Matlab (one-phase).
    /// (see: https://uk.mathworks.com/help/stats/kmeans.html#bueq7aj-5    Section: More About)
    /// 
    /// ## Arguments
    /// - **k**: Amount of clusters to search for
    /// - **max_iter**: Limit the maximum amount of iterations (just pass a high number for infinite)
    /// - **init**: Initialization-Method to use for the initialization of the **k** centroids
    /// - **config**: [`KMeansConfig`] instance, containing several configuration options for the calculation.
    /// 
    /// ## Returns
    /// Instance of [`KMeansState`], containing the final state (result).
    /// 
    /// ## Example
    /// ```rust
    /// use kmeans::*;
    /// fn main() {
    ///     let (sample_cnt, sample_dims, k, max_iter) = (20000, 200, 4, 100);
    /// 
    ///     // Generate some random data
    ///     let mut samples = vec![0.0f64;sample_cnt * sample_dims];
    ///     samples.iter_mut().for_each(|v| *v = rand::random());
    /// 
    ///     // Calculate kmeans, using kmean++ as initialization-method
    ///     let kmean = KMeans::new(samples, sample_cnt, sample_dims);
    ///     let result = kmean.kmeans_lloyd(k, max_iter, KMeans::init_kmeanplusplus, &KMeansConfig::default());
    /// 
    ///     println!("Centroids: {:?}", result.centroids);
    ///     println!("Cluster-Assignments: {:?}", result.assignments);
    ///     println!("Error: {}", result.distsum);
    /// }
    /// ```
    pub fn kmeans_lloyd<'a, F>(&self, k: usize, max_iter: usize, init: F, config: &KMeansConfig<'a, T>) -> KMeansState<T>
                where for<'c> F: FnOnce(&KMeans<T>, &mut KMeansState<T>, &KMeansConfig<'c, T>) {
        crate::variants::Lloyd::calculate(&self, k, max_iter, init, config)
    }

    /// Mini-Batch k-Means implementation.
    /// (see: https://dl.acm.org/citation.cfm?id=1772862)
    /// 
    /// ## Arguments
    /// - **batch_size**: Amount of samples to use per iteration (higher -> better approximation but slower)
    /// - **k**: Amount of clusters to search for
    /// - **max_iter**: Limit the maximum amount of iterations (just pass a high number for infinite)
    /// - **init**: Initialization-Method to use for the initialization of the **k** centroids
    /// - **config**: [`KMeansConfig`] instance, containing several configuration options for the calculation.
    /// 
    /// ## Returns
    /// Instance of [`KMeansState`], containing the final state (result).
    /// 
    /// ## Example
    /// ```rust
    /// use kmeans::*;
    /// fn main() {
    ///     let (sample_cnt, sample_dims, k, max_iter) = (20000, 200, 4, 100);
    ///
    ///     // Generate some random data
    ///     let mut samples = vec![0.0f64;sample_cnt * sample_dims];
    ///     samples.iter_mut().for_each(|v| *v = rand::random());
    ///
    ///     // Calculate kmeans, using kmean++ as initialization-method
    ///     let kmean = KMeans::new(samples, sample_cnt, sample_dims);
    ///     let result = kmean.kmeans_minibatch(4, k, max_iter, KMeans::init_random_sample, &KMeansConfig::default());
    ///
    ///     println!("Centroids: {:?}", result.centroids);
    ///     println!("Cluster-Assignments: {:?}", result.assignments);
    ///     println!("Error: {}", result.distsum);
    /// }
    /// ```
    pub fn kmeans_minibatch<'a, F>(&self, batch_size: usize, k: usize, max_iter: usize, init: F, config: &KMeansConfig<'a, T>) -> KMeansState<T>
            where for<'c> F: FnOnce(&KMeans<T>, &mut KMeansState<T>, &KMeansConfig<'c, T>) {
        crate::variants::Minibatch::calculate(&self, batch_size, k, max_iter, init, config)
    }

    /// K-Means++ initialization method, as implemented in Matlab
    /// 
    /// ## Description
    /// This initialization method starts by selecting one sample as first centroid.
    /// Proceeding from there, the method iteratively selects one new centroid (per iteration) by calculating
    /// each sample's probability of "being a centroid". This probability is bigger, the farther away a sample
    /// is from its centroid. Then, one sample is randomly selected, while taking their probability of being
    /// the next centroid into account. This leads to a tendency of selecting centroids, that are far away from
    /// their currently assigned cluster's centroid.
    /// (see: https://uk.mathworks.com/help/stats/kmeans.html#bueq7aj-5    Section: More About)
    /// 
    /// ## Note
    /// This method is not meant for direct invocation. Pass a reference to it, to an instance-method of [`KMeans`].
    pub fn init_kmeanplusplus<'a>(kmean: &KMeans<T>, state: &mut KMeansState<T>, config: &KMeansConfig<'a, T>) {
        crate::inits::kmeanplusplus::calculate(kmean, state, config);
    }

    /// Random-Parition initialization method
    /// 
    /// ## Description
    /// This initialization method randomly partitions the samples into k partitions, and then calculates these partion's means.
    /// These means are then used as initial clusters.
    /// 
    pub fn init_random_partition<'a>(kmean: &KMeans<T>, state: &mut KMeansState<T>, config: &KMeansConfig<'a, T>) {
        crate::inits::randompartition::calculate(kmean, state, config);
    }

    /// Random sample initialization method (a.k.a. Forgy)
    /// 
    /// ## Description
    /// This initialization method randomly selects k centroids from the samples as initial centroids.
    /// 
    /// ## Note
    /// This method is not meant for direct invocation. Pass a reference to it, to an instance-method of [`KMeans`].
    pub fn init_random_sample<'a>(kmean: &KMeans<T>, state: &mut KMeansState<T>, config: &KMeansConfig<'a, T>) {
        crate::inits::randomsample::calculate(kmean, state, config);
    }

}


#[cfg(test)]
mod tests {
    use super::*;
    use test::Bencher;

    #[test]
    fn padding_and_cluster_assignments() {
        calculate_cluster_assignments_multiplex(1);
        calculate_cluster_assignments_multiplex(2);
        calculate_cluster_assignments_multiplex(3);
        calculate_cluster_assignments_multiplex(97);
        calculate_cluster_assignments_multiplex(98);
        calculate_cluster_assignments_multiplex(99);
        calculate_cluster_assignments_multiplex(100);
    }

    fn calculate_cluster_assignments_multiplex(sample_dims: usize) {
        calculate_cluster_assignments::<f64>(sample_dims, 1e-10f64);
        calculate_cluster_assignments::<f32>(sample_dims, 1e-5f32);
    }

    fn calculate_cluster_assignments<T: Primitive>(sample_dims: usize, max_diff: T) where [T;LANES] : SimdArray, Simd<[T;LANES]>: SimdWrapper<T> {
        let sample_cnt = 1000;
        let k = 5;

        let mut samples = vec![T::zero();sample_cnt * sample_dims];
        samples.iter_mut().for_each(|i| *i = thread_rng().gen_range(T::zero(), T::one()));

        let kmean = KMeans::new(samples, sample_cnt, sample_dims);
        
        let mut state = KMeansState::new(kmean.sample_cnt, kmean.p_sample_dims, k);
        state.centroids.iter_mut()
            .zip(kmean.p_samples.iter())
            .for_each(|(c,s)| *c = *s);

        // calculate distances using method that (hopefully) works.
        let mut should_assignments = state.assignments.clone();
        let mut should_centroid_distances = state.centroid_distances.clone();
        kmean.p_samples.chunks_exact(kmean.p_sample_dims)
            .zip(should_assignments.iter_mut())
            .zip(should_centroid_distances.iter_mut())
            .for_each(|((s, assignment), centroid_dist)| {
                let (best_idx, best_dist) = state.centroids
                    .chunks_exact(kmean.p_sample_dims)
                    .map(|c| {
                        s.iter().cloned().zip(c.iter().cloned())
                            .map(|(sv,cv)| sv - cv)
                            .map(|v| v * v)
                            .sum::<T>()
                    })
                    .enumerate()
                    .min_by(|(_,d0), (_,d1)| d0.partial_cmp(d1).unwrap())
                    .unwrap();
                *assignment = best_idx;
                *centroid_dist = best_dist;
            });

        
        // calculate distances using optimized code
        kmean.update_cluster_assignments(&mut state, None);

        for i in 0..should_assignments.len() {
            assert_approx_eq!(state.centroid_distances[i], should_centroid_distances[i], max_diff);
        }
        assert_eq!(state.assignments, should_assignments);
    }

    #[bench]
    fn distance_matrix_calculation_benchmark_f64(b: &mut Bencher) { distance_matrix_calculation_benchmark::<f64>(b); }
    #[bench]
    fn distance_matrix_calculation_benchmark_f32(b: &mut Bencher) { distance_matrix_calculation_benchmark::<f32>(b); }

    fn distance_matrix_calculation_benchmark<T: Primitive>(b: &mut Bencher) where [T;LANES] : SimdArray, Simd<[T;LANES]>: SimdWrapper<T> {
        let sample_cnt = 20000;
        let sample_dims = 2000;
        let k = 8;

        let mut samples = vec![T::zero();sample_cnt * sample_dims];
        samples.iter_mut().for_each(|v| *v = thread_rng().gen_range(T::zero(), T::one()));
        let kmean = KMeans::new(samples, sample_cnt, sample_dims);

        let mut state = KMeansState::new(kmean.sample_cnt, kmean.p_sample_dims, k);
        state.centroids.iter_mut()
            .zip(kmean.p_samples.iter())
            .for_each(|(c,s)| *c = *s);

        b.iter(|| {
            KMeans::update_cluster_assignments(&kmean, &mut state, None);
            state.clone()
        });
    }
}