1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
//! The Quantized DHT Arc type
//!
//! Arq coordinates are expressed in terms of powers-of-two, representing
//! the "chunk" or "segment" size to work with. The actual extent of the Arq
//! is expressed as a `start` and an `offset`, in terms of the chunk size.
//! So, Arq boundaries can only ever fall on a quantized grid which is determined
//! by the `power` setting.

mod arq_set;
mod peer_view;
mod strat;

#[cfg(feature = "test_utils")]
pub mod ascii;

pub use arq_set::*;

pub use peer_view::*;
pub use strat::*;

use kitsune_p2p_dht_arc::{DhtArc, DhtArcRange};

use crate::{op::Loc, spacetime::*};

/// Convenience method for taking the power of 2 in u32
pub fn pow2(p: u8) -> u32 {
    debug_assert!(p < 32);
    2u32.pow((p as u32).min(31))
}

/// Convenience method for taking the power of 2 in f64
pub fn pow2f(p: u8) -> f64 {
    debug_assert!(p < 32);
    2f64.powf(p as f64)
}

/// Maximum number of values that a u32 can represent.
pub(crate) const U32_LEN: u64 = u32::MAX as u64 + 1;

/// Represents the start point or "left edge" of an Arq.
///
/// This helps us generalize over the two use cases of Arq:
/// 1. An Arq which is defined at a definite absolute DhtLocation corresponding
///    to an Agent's location, and which can be requantized, resized, etc.
/// 2. An Arq which has no absolute location defined, and which simply represents
///    a (quantized) range.
pub trait ArqStart: Sized + Copy + std::fmt::Debug {
    /// Get the DhtLocation representation
    fn to_loc(&self, topo: &Topology, power: u8) -> Loc;
    /// Get the exponential SpaceOffset representation
    fn to_offset(&self, topo: &Topology, power: u8) -> SpaceOffset;
    /// Requantize to a higher power, using the precalculated multiplicative factor.
    fn requantize_up(&self, factor: u32) -> Option<Self>;
    /// Requantize to a lower power, using the precalculated multiplicative factor.
    fn requantize_down(&self, factor: u32) -> Self;
}

impl ArqStart for Loc {
    fn to_loc(&self, _topo: &Topology, _power: u8) -> Loc {
        *self
    }

    fn to_offset(&self, topo: &Topology, power: u8) -> SpaceOffset {
        SpaceOffset::from_absolute_rounded(*self, topo, power)
    }

    fn requantize_up(&self, _factor: u32) -> Option<Self> {
        Some(*self)
    }

    fn requantize_down(&self, _factor: u32) -> Self {
        *self
    }
}

impl ArqStart for SpaceOffset {
    fn to_loc(&self, topo: &Topology, power: u8) -> Loc {
        self.to_absolute(topo, power)
    }

    fn to_offset(&self, _topo: &Topology, _power: u8) -> SpaceOffset {
        *self
    }

    fn requantize_up(&self, factor: u32) -> Option<Self> {
        ((**self) % factor == 0).then(|| *self / factor)
    }

    fn requantize_down(&self, factor: u32) -> Self {
        *self * factor
    }
}

/// A quantized DHT arc.
///
/// ## Coordinates
///
/// Arq coordinates are expressed in terms of powers-of-two, representing
/// the "chunk" or "segment" size to work with.
/// The chunk size is determined by the [`Topology`] of the space it is in,
/// as well as the `power` of the Arq. The actual chunk size is given by:
///
/// `chunk size = topology.space.quantum * 2^power`
///
/// So, the `power` represents the amount of quantization *on top* of the quantum
/// size set by the Topology, not the total quantization level.
///
/// The `start` is generic, because there are actually two flavors of Arq:
/// - one which has a definite starting DhtLocation associated with it,
/// - and one which does not.
///
/// The first flavor is used to represent Arqs which belong to Agents. It's important
/// to record the actual absolute Location of the Arq, because the exact location
/// determines the starting Chunk when requantizing to higher and lower levels.
///
/// The second flavor is mainly used to represent the intersections and unions of Arqs.
/// In this case, there is no definite location associated, so we want to forget
/// about the original Location data associated with each Arq.
#[derive(Debug, Copy, Clone, PartialEq, Eq, serde::Serialize, serde::Deserialize)]
pub struct Arq<S: ArqStart = Loc> {
    /// The "start" defines the left edge of the arq
    pub start: S,
    /// The level of quantization. Total length is `2^power * count`.
    /// The power must be between 0 and 31, inclusive (power of 32 causes overflow)
    pub power: u8,
    /// The number of unit lengths.
    /// We never expect the count to be less than 4 or so, and not much larger
    /// than 32.
    pub count: SpaceOffset,
}

/// Alias for Arq with an Loc start
pub type ArqLocated = Arq<Loc>;

/// Alias for Arq with an SpaceOffset start
pub type ArqBounds = Arq<SpaceOffset>;

impl<S: ArqStart> Arq<S> {
    /// Constructor from individual parts
    pub fn new(power: u8, start: S, count: SpaceOffset) -> Self {
        Self {
            power,
            start,
            count,
        }
    }

    /// The number of quanta to use for each segment
    #[inline]
    fn quantum_chunk_width(&self) -> u32 {
        pow2(self.power)
    }

    /// The absolute length of each segment, the "chunk size"
    #[inline]
    pub(crate) fn absolute_chunk_width(&self, topo: &Topology) -> u32 {
        let len = self
            .quantum_chunk_width()
            .saturating_mul(topo.space.quantum)
            .min(u32::MAX / 2);
        // this really shouldn't ever be larger than MAX / 8
        debug_assert!(
            len <= u32::MAX / 4 + 2,
            "chunk width is much larger than expected: {}",
            len
        );
        len
    }

    /// The absolute length of the entire arq.
    pub fn absolute_length(&self, topo: &Topology) -> u64 {
        let len = (self.absolute_chunk_width(topo) as u64 * (*self.count as u64)).min(U32_LEN);
        debug_assert_eq!(
            len,
            self.to_dht_arc_range(topo).length(),
            "lengths don't match {:?}",
            self
        );
        len
    }

    /// Convert to [`DhtArcRange`]
    pub fn to_dht_arc_range(&self, topo: &Topology) -> DhtArcRange {
        if is_full(topo, self.power, *self.count) {
            DhtArcRange::Full
        } else if *self.count == 0 {
            DhtArcRange::Empty
        } else {
            let (a, b) = self.to_edge_locs(topo);
            DhtArcRange::from_bounds(a, b)
        }
    }

    /// Determine the edges of this Arq in absolute coordinates ([`Loc`])
    pub fn to_edge_locs(&self, topo: &Topology) -> (Loc, Loc) {
        let start = self.start.to_offset(topo, self.power);
        let left = start.to_loc(topo, self.power);
        let right = (start + self.count).to_loc(topo, self.power) - Loc::from(1);
        (left, right)
    }

    /// Accessor
    pub fn power(&self) -> u8 {
        self.power
    }

    /// Accessor
    pub fn count(&self) -> u32 {
        self.count.into()
    }

    /// What portion of the whole circle does this arq cover?
    pub fn coverage(&self, topo: &Topology) -> f64 {
        self.absolute_length(topo) as f64 / 2f64.powf(32.0)
    }

    /// Requantize to a different power. If requantizing to a higher power,
    /// only requantize if there is no information loss due to rounding.
    /// Otherwise, return None.
    pub fn requantize(&self, new_power: u8) -> Option<Self> {
        let old_power = self.power;
        let old_count = self.count;
        if old_power < new_power {
            let factor = 2u32.pow((new_power - old_power) as u32);
            self.start.requantize_up(factor).and_then(|start| {
                let new_count = old_count / factor;
                if old_count == new_count * factor {
                    Some((start, new_power, new_count))
                } else {
                    None
                }
            })
        } else {
            let factor = 2u32.pow((old_power - new_power) as u32);
            let new_count = old_count * factor;
            Some((self.start.requantize_down(factor), new_power, new_count))
        }
        .map(|(start, power, count)| Self {
            start,
            power,
            count,
        })
    }

    /// This arq has full coverage
    pub fn is_full(&self, topo: &Topology) -> bool {
        is_full(topo, self.power(), self.count())
    }

    /// This arq has zero coverage
    pub fn is_empty(&self) -> bool {
        self.count() == 0
    }
}

impl Arq<Loc> {
    /// Construct a full arq at the given power.
    /// The `count` is calculated accordingly.
    pub fn new_full(topo: &Topology, start: Loc, power: u8) -> Self {
        let count = pow2(32u8.saturating_sub(power + topo.space.quantum_power));
        assert!(is_full(topo, power, count));
        Self {
            start,
            power,
            count: count.into(),
        }
    }

    /// Reduce the power by 1
    pub fn downshift(&self) -> Self {
        Self {
            start: self.start,
            power: self.power - 1,
            count: self.count * 2,
        }
    }

    /// Increase the power by 1. If this results in rounding, return None,
    /// unless `force` is true, in which case always return Some.
    pub fn upshift(&self, force: bool) -> Option<Self> {
        let count = if force && *self.count % 2 == 1 {
            self.count + SpaceOffset(1)
        } else {
            self.count
        };
        (*count % 2 == 0).then(|| Self {
            start: self.start,
            power: self.power + 1,
            count: count / 2,
        })
    }

    /// Convert to the [`ArqBounds`] representation, which forgets about the
    /// [`Loc`] associated with this arq.
    pub fn to_bounds(&self, topo: &Topology) -> ArqBounds {
        ArqBounds {
            start: SpaceOffset::from(self.start.as_u32() / self.absolute_chunk_width(topo)),
            power: self.power,
            count: self.count,
        }
    }

    /// Get a reference to the arq's left edge in absolute coordinates.
    pub fn start_loc(&self) -> Loc {
        self.start
    }

    /// Get a mutable reference to the arq's count.
    pub fn count_mut(&mut self) -> &mut u32 {
        &mut self.count
    }

    /// Convert to [`DhtArc`]
    pub fn to_dht_arc(&self, topo: &Topology) -> DhtArc {
        let len = self.absolute_length(topo);
        DhtArc::from_start_and_len(self.start, len)
    }

    /// Computes the Arq which most closely matches the given [`DhtArc`]
    pub fn from_dht_arc_approximate(topo: &Topology, strat: &ArqStrat, dht_arc: &DhtArc) -> Self {
        approximate_arq(topo, strat, dht_arc.start_loc(), dht_arc.length())
    }

    /// The two arqs represent the same interval despite having potentially different terms
    pub fn equivalent(topo: &Topology, a: &Self, b: &Self) -> bool {
        let qa = a.absolute_chunk_width(topo);
        let qb = b.absolute_chunk_width(topo);
        a.start == b.start && (a.count.wrapping_mul(qa) == b.count.wrapping_mul(qb))
    }
}

impl From<&ArqBounds> for ArqBounds {
    fn from(a: &ArqBounds) -> Self {
        *a
    }
}

impl ArqBounds {
    /// The two arqs represent the same interval despite having potentially different terms
    pub fn equivalent(topo: &Topology, a: &Self, b: &Self) -> bool {
        let qa = a.absolute_chunk_width(topo);
        let qb = b.absolute_chunk_width(topo);
        *a.count == 0 && *b.count == 0
            || (a.start.wrapping_mul(qa) == b.start.wrapping_mul(qb)
                && a.count.wrapping_mul(qa) == b.count.wrapping_mul(qb))
    }

    /// Return the ArqBounds which most closely matches the given [`DhtArcRange`]
    pub fn from_interval_rounded(
        topo: &Topology,
        power: u8,
        interval: DhtArcRange,
    ) -> (Self, bool) {
        Self::from_interval_inner(&topo.space, power, interval, true).unwrap()
    }

    /// Return the ArqBounds which is equivalent to the given [`DhtArcRange`] if it exists.
    pub fn from_interval(topo: &Topology, power: u8, interval: DhtArcRange) -> Option<Self> {
        Self::from_interval_inner(&topo.space, power, interval, false).map(|(a, _)| a)
    }

    /// Upcast this ArqBounds to an Arq that has knowledge of its [`Loc`]
    #[cfg(any(test, feature = "test_utils"))]
    pub fn to_arq<F: FnOnce(Loc) -> Loc>(&self, topo: &Topology, f: F) -> Arq {
        Arq {
            start: f(self.start.to_loc(topo, self.power)),
            power: self.power,
            count: self.count,
        }
    }

    /// An arbitrary zero-coverage arq.
    pub fn empty(topo: &Topology, power: u8) -> Self {
        Self::from_interval(topo, power, DhtArcRange::Empty).unwrap()
    }

    fn from_interval_inner(
        dim: &Dimension,
        power: u8,
        interval: DhtArcRange,
        always_round: bool,
    ) -> Option<(Self, bool)> {
        match interval {
            DhtArcRange::Empty => Some((
                Self {
                    start: 0.into(),
                    power,
                    count: 0.into(),
                },
                false,
            )),
            DhtArcRange::Full => {
                assert!(power > 0);
                let full_count = 2u32.pow(32 - power as u32 - dim.quantum_power as u32);
                Some((
                    Self {
                        start: 0.into(),
                        power,
                        count: full_count.into(),
                    },
                    false,
                ))
            }
            DhtArcRange::Bounded(lo, hi) => {
                let lo = lo.as_u32();
                let hi = hi.as_u32();
                let q = dim.quantum;
                let s = 2u32.pow(power as u32) * q;
                let offset = lo / s;
                let len = if lo <= hi {
                    hi - lo + 1
                } else {
                    (2u64.pow(32) - (lo as u64) + (hi as u64) + 1) as u32
                };
                let count = len / s;
                // XXX: this is kinda wrong. The right bound of the interval
                // should be 1 less, but we'll accept if it bleeds over by 1 too.
                let rem = len % s;
                let diff = rem.min(s - rem);
                let lossless = lo == offset * s && (diff <= 1);
                if always_round || lossless {
                    Some((
                        Self {
                            start: offset.into(),
                            power,
                            count: count.into(),
                        },
                        !lossless,
                    ))
                } else {
                    tracing::warn!("{} =?= {} == {} * {}", lo, offset * s, offset, s);
                    tracing::warn!("{} =?= {} == {} * {}", len, count * s, count, s);
                    None
                }
            }
        }
    }

    /// Iterate over each segment (chunk) in the Arq
    pub fn segments(&self) -> impl Iterator<Item = SpaceSegment> + '_ {
        (0..*self.count).map(|c| SpaceSegment::new(self.power, c.wrapping_add(*self.start)))
    }

    /// Get a reference to the arq bounds's offset.
    pub fn offset(&self) -> SpaceOffset {
        self.start
    }
}

/// Calculate whether a given combination of power and count corresponds to
/// full DHT coverage.
///
/// e.g. if the space quantum is 2^12, and the power is 14,
/// then the max power is (32 - 12) = 24. Any power 24 or greater implies fullness,
/// since even a count of 1 would be greater than 2^32.
/// Any power lower than 24 will result in full coverage with
/// count >= 2^(32 - 12 - 14) = 2^6 = 64, since it would take 64 chunks of
/// size 2^(12 + 14) to cover the full space.
pub fn is_full(topo: &Topology, power: u8, count: u32) -> bool {
    let max = 32u8.saturating_sub(topo.space.quantum_power);
    if power == 0 {
        false
    } else if power >= 32 {
        true
    } else {
        count >= pow2(max.saturating_sub(power))
    }
}

/// Calculate the unique pairing of power and count implied by a given length
/// and max number of chunks
pub fn power_and_count_from_length(dim: &Dimension, len: u64, max_chunks: u32) -> (u8, u32) {
    assert!(len <= U32_LEN);
    let mut power = 0;
    let mut count = (len / dim.quantum as u64) as f64;
    let max = max_chunks as f64;

    while count.round() > max {
        power += 1;
        count /= 2.0;
    }
    let count = count.round() as u32;
    (power, count)
}

/// Given a center and a length, give Arq which matches most closely given the provided strategy
pub fn approximate_arq(topo: &Topology, strat: &ArqStrat, start: Loc, len: u64) -> Arq {
    if len == 0 {
        Arq::new(topo.min_space_power(), start, 0.into())
    } else {
        let (power, count) = power_and_count_from_length(&topo.space, len, strat.max_chunks());

        let min = strat.min_chunks() as f64;
        let max = strat.max_chunks() as f64;

        debug_assert!(
            power == 0 || count >= min as u32,
            "count < min: {} < {}",
            count,
            min
        );
        debug_assert!(
            power == 0 || count <= max as u32,
            "count > max: {} > {}",
            count,
            max
        );
        debug_assert!(count == 0 || count - 1 <= u32::MAX / topo.space.quantum);
        debug_assert!(
            power <= topo.max_space_power(strat),
            "power too large: {}",
            power
        );
        Arq::new(power as u8, start, count.into())
    }
}

#[cfg(test)]
mod tests {
    use super::*;

    use test_case::test_case;

    #[test]
    fn test_is_full() {
        {
            let topo = Topology::unit_zero();
            assert!(!is_full(&topo, 31, 1));
            assert!(is_full(&topo, 31, 2));
            assert!(is_full(&topo, 31, 3));

            assert!(!is_full(&topo, 30, 3));
            assert!(is_full(&topo, 30, 4));
            assert!(is_full(&topo, 29, 8));

            assert!(is_full(&topo, 1, 2u32.pow(31)));
            assert!(!is_full(&topo, 1, 2u32.pow(31) - 1));
            assert!(is_full(&topo, 2, 2u32.pow(30)));
            assert!(!is_full(&topo, 2, 2u32.pow(30) - 1));
        }
        {
            let topo = Topology::standard_epoch_full();
            assert!(!is_full(&topo, 31 - 12, 1));
            assert!(is_full(&topo, 31 - 12, 2));

            // power too high, doesn't panic
            assert!(is_full(&topo, 31, 2));
            // power too low, doesn't panic
            assert!(!is_full(&topo, 1, 2));
        }
    }

    #[test]
    fn test_full_intervals() {
        let topo = Topology::unit_zero();
        let full1 = Arq::new_full(&topo, 0u32.into(), 29);
        let full2 = Arq::new_full(&topo, 2u32.pow(31).into(), 25);
        assert!(matches!(full1.to_dht_arc_range(&topo), DhtArcRange::Full));
        assert!(matches!(full2.to_dht_arc_range(&topo), DhtArcRange::Full));
    }

    #[test]
    fn arq_requantize() {
        let c = Arq {
            start: Loc::from(42u32),
            power: 20,
            count: SpaceOffset(10),
        };

        let rq = |c: &Arq, p| (*c).requantize(p);

        assert_eq!(rq(&c, 18).map(|c| *c.count), Some(40));
        assert_eq!(rq(&c, 19).map(|c| *c.count), Some(20));
        assert_eq!(rq(&c, 20).map(|c| *c.count), Some(10));
        assert_eq!(rq(&c, 21).map(|c| *c.count), Some(5));
        assert_eq!(rq(&c, 22).map(|c| *c.count), None);
        assert_eq!(rq(&c, 23).map(|c| *c.count), None);
        assert_eq!(rq(&c, 24).map(|c| *c.count), None);

        let c = Arq {
            start: Loc::from(42u32),
            power: 20,
            count: SpaceOffset(256),
        };

        assert_eq!(rq(&c, 12).map(|c| *c.count), Some(256 * 256));
        assert_eq!(rq(&c, 28).map(|c| *c.count), Some(1));
        assert_eq!(rq(&c, 29).map(|c| *c.count), None);
    }

    #[test]
    fn test_to_bounds() {
        let topo = Topology::unit_zero();
        let pow: u8 = 4;
        {
            let a = Arq::new(pow, (2u32.pow(pow.into()) - 1).into(), 16.into());
            let b = a.to_bounds(&topo);
            assert_eq!(b.offset(), SpaceOffset(0));
            assert_eq!(b.count(), 16);
        }
        {
            let a = Arq::new(pow, 4u32.into(), 18.into());
            let b = a.to_bounds(&topo);
            assert_eq!(b.count(), 18);
        }
    }

    #[test]
    fn from_interval_regression() {
        let topo = Topology::unit_zero();
        let i = DhtArcRange::Bounded(4294967040u32.into(), 511.into());
        assert!(ArqBounds::from_interval(&topo, 8, i).is_some());
    }

    #[test_case(2u64.pow(30), (14, 16))]
    #[test_case(2u64.pow(31), (15, 16))]
    #[test_case(2u64.pow(32), (16, 16))]
    #[test_case(128 * 2u64.pow(24), (15, 16))]
    #[test_case((128 + 16) * 2u64.pow(24), (16, 9))]
    fn test_power_and_count_from_length(len: u64, expected: (u8, u32)) {
        let topo = Topology::standard_epoch_full();
        let (p, c) = power_and_count_from_length(&topo.space, len, 16);
        assert_eq!((p, c), expected);
        assert_eq!(
            2u64.pow(p as u32 + topo.space.quantum_power as u32) * c as u64,
            len
        );
    }

    proptest::proptest! {

        #[test]
        fn test_to_edge_locs(power in 0u8..16, count in 8u32..16, loc: u32) {
            // We use powers from 0 to 16 because with standard space topology,
            // the quantum size is 2^12, and the max count is 16 which is 2^4,
            // so any power greater than 16 could result in an overflow.
            let topo = Topology::standard_epoch_full();
            let a = Arq::new(power, Loc::from(loc), SpaceOffset(count));
            let (left, right) = a.to_edge_locs(&topo);
            let p = pow2(power);
            assert_eq!(left.as_u32() % p, 0);
            assert_eq!(right.as_u32().wrapping_add(1) % p, 0);

            assert_eq!(a.absolute_length(&topo), (right - left).as_u32() as u64 + 1);
        }

        #[test]
        fn test_preserve_ordering_for_bounds(mut centers: Vec<u32>, count in 0u32..8, power in 0u8..16) {
            let topo = Topology::standard_epoch_full();

            // given a list of sorted centerpoints
            centers.sort();

            // build identical arqs at each centerpoint and convert them to ArqBounds
            let arqs: Vec<_> = centers.into_iter().map(|c| Arq::new(power, c.into(), count.into())).collect();
            let mut bounds: Vec<_> = arqs.into_iter().map(|a| a.to_bounds(&topo)).enumerate().collect();

            // Ensure the list of ArqBounds also grows monotonically.
            // However, there may be one point at which monotonicity is broken,
            // corresponding to the left edge wrapping around.
            bounds.sort_by_key(|(_, b)| b.to_edge_locs(&topo).0);

            let mut prev = 0;
            let mut split = None;
            for (i, (ix, _)) in bounds.iter().enumerate() {
                if prev > *ix {
                    split = Some(i);
                    break;
                }
                prev = *ix;
            }

            // Split the list of bounds in two, if a discontinuity was found,
            // and check the monotonicity of each piece separately.
            let (b1, b2) = bounds.split_at(split.unwrap_or(0));
            let ix1: Vec<_> = b1.iter().map(|(i, _)| i).collect();
            let ix2: Vec<_> = b2.iter().map(|(i, _)| i).collect();
            let mut ix1s = ix1.clone();
            let mut ix2s = ix2.clone();
            ix1s.sort();
            ix2s.sort();
            assert_eq!(ix1, ix1s);
            assert_eq!(ix2, ix2s);
        }

        #[test]
        fn dht_arc_roundtrip_unit_topo(center: u32, pow in 4..29u8, count in 0..8u32) {
            let topo = Topology::unit_zero();
            let length = count as u64 * 2u64.pow(pow as u32) / 2 * 2;
            let strat = ArqStrat::default();
            let arq = approximate_arq(&topo, &strat, center.into(), length);
            let dht_arc = arq.to_dht_arc(&topo);
            assert_eq!(arq.absolute_length(&topo), dht_arc.length());
            let arq2 = Arq::from_dht_arc_approximate(&topo, &strat, &dht_arc);
            assert_eq!(arq, arq2);
        }

        #[test]
        fn dht_arc_roundtrip_standard_topo(center: u32, pow in 0..16u8, count in 0..8u32) {
            let topo = Topology::standard_epoch_full();
            let length = count as u64 * 2u64.pow(pow as u32) / 2 * 2;
            let strat = ArqStrat::default();
            let arq = approximate_arq(&topo, &strat, center.into(), length);
            let dht_arc = arq.to_dht_arc(&topo);
            assert_eq!(arq.absolute_length(&topo), dht_arc.length());
            let arq2 = Arq::from_dht_arc_approximate(&topo, &strat, &dht_arc);
            assert!(Arq::<Loc>::equivalent(&topo, &arq, &arq2));
        }

        #[test]
        fn arc_interval_roundtrip(center: u32, pow in 0..16u8, count in 0..8u32) {
            let topo = Topology::standard_epoch_full();
            let length = count as u64 * 2u64.pow(pow as u32) / 2 * 2;
            let strat = ArqStrat::default();
            let arq = approximate_arq(&topo, &strat, center.into(), length).to_bounds(&topo);
            let interval = arq.to_dht_arc_range(&topo);
            let arq2 = ArqBounds::from_interval(&topo, arq.power(), interval.clone()).unwrap();
            assert!(ArqBounds::equivalent(&topo, &arq, &arq2));
        }
    }
}