1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
#![no_std]
use cipher::consts::{U16, U32};
use cipher::generic_array::GenericArray;
use cipher::{AlgorithmName, BlockCipher, InvalidLength, KeyInit, KeySizeUser};
use core::fmt::Formatter;

#[cfg(feature = "zeroize")]
use cipher::zeroize::{Zeroize, ZeroizeOnDrop};

mod consts;
use crate::consts::{KEY_SCHEDULE, NUMBER_OF_ROUNDS};
use consts::S_BOX;

pub type UserKey = GenericArray<u8, U16>;

/// 1024-bit SEED key.
pub type Key = GenericArray<u32, U32>;

/// 128-bit SEED block.
pub type Block = GenericArray<u8, U16>;

enum TransformDirection {
    Encrypt,
    Decrypt,
}

pub struct SEED {
    key: Key,
}

impl SEED {
    pub fn with_key(key: Key) -> Self {
        Self { key }
    }
}

fn derive_key(key: UserKey) -> Key {
    let (mut k0, mut k1, mut k2, mut k3) = divide_block(&key);
    let mut derived = Key::default();

    let mut temp;
    for i in 0..NUMBER_OF_ROUNDS {
        temp = k0.wrapping_add(k2).wrapping_sub(KEY_SCHEDULE[i]);
        derived[2 * i] = get_seed_substitute(temp);
        temp = k1.wrapping_sub(k3).wrapping_add(KEY_SCHEDULE[i]);
        derived[2 * i + 1] = get_seed_substitute(temp);

        if i % 2 == 0 {
            temp = (k1 >> 8) | (k0 << 24);
            k0 = (k0 >> 8) | (k1 << 24);
            k1 = temp;
        } else {
            temp = (k3 << 8) | (k2 >> 24);
            k2 = (k2 << 8) | (k3 >> 24);
            k3 = temp;
        }
    }

    derived
}

impl BlockCipher for SEED {}

impl KeySizeUser for SEED {
    type KeySize = U16;
}

impl KeyInit for SEED {
    fn new(key: &cipher::Key<Self>) -> Self {
        Self::new_from_slice(key).unwrap()
    }
    fn new_from_slice(key: &[u8]) -> Result<Self, InvalidLength> {
        if key.len() != 16 {
            return Err(InvalidLength);
        }

        Ok(SEED {
            key: derive_key(UserKey::clone_from_slice(key)),
        })
    }
}

#[cfg(feature = "zeroize")]
impl Drop for SEED {
    fn drop(&mut self) {
        self.key.zeroize();
    }
}

#[cfg(feature = "zeroize")]
impl ZeroizeOnDrop for SEED {}

fn transform(
    l0: &mut u32,
    l1: &mut u32,
    r0: &mut u32,
    r1: &mut u32,
    key: Key,
    output: &mut Block,
    direction: TransformDirection,
) {
    match direction {
        TransformDirection::Encrypt => {
            for i in (0..=30).step_by(4) {
                seed_round(l0, l1, *r0, *r1, &key, i);
                seed_round(r0, r1, *l0, *l1, &key, i + 2);
            }
        }
        TransformDirection::Decrypt => {
            for i in (0..=30).rev().step_by(4) {
                seed_round(l0, l1, *r0, *r1, &key, i);
                seed_round(r0, r1, *l0, *l1, &key, i - 2);
            }
        }
    }

    unsafe {
        let out = output[..].as_mut_ptr();
        *(out as *mut u32) = r0.to_be();
        *(out.offset(4) as *mut u32) = r1.to_be();
        *(out.offset(8) as *mut u32) = l0.to_be();
        *(out.offset(12) as *mut u32) = l1.to_be();
    }
}

fn encrypt(block: Block, key: Key, output: &mut Block) {
    let (mut l0, mut l1, mut r0, mut r1) = divide_block(&block);
    transform(
        &mut l0,
        &mut l1,
        &mut r0,
        &mut r1,
        key,
        output,
        TransformDirection::Encrypt,
    );
}

fn decrypt(block: Block, key: Key, output: &mut Block) {
    let (mut l0, mut l1, mut r0, mut r1) = divide_block(&block);
    transform(
        &mut l0,
        &mut l1,
        &mut r0,
        &mut r1,
        key,
        output,
        TransformDirection::Decrypt,
    );
}

fn seed_round(l0: &mut u32, l1: &mut u32, r0: u32, r1: u32, key: &Key, offset: usize) {
    let mut t0 = r0 ^ key[offset];
    let mut t1 = r1 ^ key[offset + 1];
    t1 ^= t0;

    t1 = get_seed_substitute(t1);
    t0 = t0.wrapping_add(t1);
    t0 = get_seed_substitute(t0);
    t1 = t1.wrapping_add(t0);
    t1 = get_seed_substitute(t1);
    t0 = t0.wrapping_add(t1);
    *l0 ^= t0;
    *l1 ^= t1;
}

fn get_seed_substitute(value: u32) -> u32 {
    (0..4)
        .map(|idx| S_BOX[idx][((value >> (idx * 8)) as u8) as usize])
        .reduce(|acc, e| acc ^ e)
        .unwrap()
}

fn divide_block(block: &[u8]) -> (u32, u32, u32, u32) {
    assert_eq!(block.len(), 16);
    (
        u32::from_be_bytes(block[..4].try_into().unwrap()),
        u32::from_be_bytes(block[4..8].try_into().unwrap()),
        u32::from_be_bytes(block[8..12].try_into().unwrap()),
        u32::from_be_bytes(block[12..16].try_into().unwrap()),
    )
}

impl AlgorithmName for SEED {
    fn write_alg_name(f: &mut Formatter<'_>) -> core::fmt::Result {
        f.write_str("KISA-SEED")
    }
}

cipher::impl_simple_block_encdec!(
    SEED, U16, cipher, block,
    encrypt: {
        let mut b = block.clone_in();
        encrypt(b, cipher.key, &mut b);
        *block.get_out() = b;
    }
    decrypt: {
        let mut b = block.clone_in();
        decrypt(b, cipher.key, &mut b);
        *block.get_out() = b;
    }
);