1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
pub mod population;
pub mod sample;

use std::cmp::Ordering::Less;
use std::collections::HashMap;

/// # Arithmetic Mean
///
/// Calculates the mean, or the average, of a vector of floats.
///
/// [Wikipedia](https://en.wikipedia.org/wiki/Mean)
///
/// Panics if dataset is empty.
///
/// ## Example
/// ```
/// let data = vec![1.0, 3.0, 3.0, 2.0, 1.0];
/// assert_eq!(kirstine::mean(&data), 2.0);
/// ```
pub fn mean(data: &Vec<f64>) -> f64 {
    let sum: f64 = data.iter().sum();
    sum / data.len() as f64
}

/// # Arithmetic Median
///
/// Calculates the median.
///
/// The function needs to clone and sort the dataset which is expensive, so if you know that your
/// dataset is sorted, then use `kirstine::median_from_sorted` instead.
///
/// Panics if dataset is empty.
///
/// ## Example
/// ```
/// let data = vec![2.0, 5.0, 1.0];
/// assert_eq!(kirstine::median(&data), 2.0);
///
/// let data = vec![2.0, 5.0, 3.0, 1.0];
/// assert_eq!(kirstine::median(&data), 2.5);
/// ```
pub fn median(data: &Vec<f64>) -> f64 {
    let mut copy = data.clone();
    copy.sort_by(|m, n| m.partial_cmp(n).unwrap_or(Less));
    median_from_sorted(&copy)
}

/// # Median from sorted vector
///
/// Faster version of `kirstine::median` that can be used if you know that your dataset is already
/// sorted.
///
/// Panics if dataset is empty.
pub fn median_from_sorted(data: &Vec<f64>) -> f64 {
    if data.is_empty() {
        panic!("Can not find median of empty list");
    }
    if data.len() % 2 == 1 {
        data[((data.len() - 1) / 2) as usize]
    } else {
        let upper_index = data.len() / 2 as usize;
        let lower_index = upper_index - 1;
        let sum = data[upper_index] + data[lower_index];
        sum / 2.0
    }
}

/// # Mode
///
/// Finds the *mode* of a dataset.
///
/// Panics if dataset is empty.
///
/// ## Example
/// ```
/// let data = vec![2.0, 5.0, 1.0, 3.0, 1.0];
/// assert_eq!(kirstine::mode(&data), &1.0);
/// ```
pub fn mode(data: &Vec<f64>) -> &f64 {
    if data.is_empty() {
        panic!("Can not find mode of empty list");
    }
    let mut nums = HashMap::new();
    for n in data.iter() {
        let n_str = n.to_string();
        let (count, _) = nums.entry(n_str).or_insert((0, n));
        *count += 1;
    }
    nums.values().max_by(|(a, _), (b, _)| a.cmp(b)).unwrap().1
}

/// # Arithmetic Range
///
/// Calculates the arithmetic range, and coefficient of range, of a dataset.
///
/// The return value is a tuple of the range, the coefficient of range, and a tuple of largest and
/// smallest value: `(range, coef_of_range, (&smallest, &largest))`
///
/// ## Example
/// ```
/// let data = vec![89.0, 73.0, 84.0, 91.0, 87.0, 77.0, 94.0];
/// let (range, coef_of_range, (smallest, largest)) = kirstine::range(&data);
/// assert_eq!(range, 21.0);
/// assert!((coef_of_range - 0.1257).abs() < 0.0001);
/// assert_eq!(smallest, &73.0);
/// assert_eq!(largest, &94.0);
/// ```
pub fn range(data: &Vec<f64>) -> (f64, f64, (&f64, &f64)) {
    if data.is_empty() {
        panic!("Can not find range of empty list");
    }
    let mut largest = &data[0];
    let mut smallest = &data[0];
    for x in data.iter() {
        if x > largest {
            largest = x;
        }
        if x < smallest {
            smallest = x;
        }
    }
    let range = largest - smallest;
    let coef_of_range = range / (largest + smallest);
    (range, coef_of_range, (smallest, largest))
}

/**
 * # Pearson correlation coefficient
 *
 * This is what is normally referred to when talking about finding the correlation.
 *
 * The `data` is a vector of tuples with `x` and `y` data points. Returns a number between -1
 * and 1.
 *
 * [Wikipedia article](https://en.wikipedia.org/wiki/Pearson_correlation_coefficient).
 */
pub fn correlation(data: &Vec<(f64, f64)>) -> f64 {
    let n = data.len() as f64;
    let mut sum_x = 0.0;
    let mut sum_y = 0.0;
    let mut sum_xy = 0.0;
    let mut sum_x2 = 0.0;
    let mut sum_y2 = 0.0;
    for (x, y) in data.iter() {
        sum_x += x;
        sum_y += y;
        sum_xy += x * y;
        sum_x2 += x.powf(2.0);
        sum_y2 += y.powf(2.0);
    }
    let dividend = n * sum_xy - sum_x * sum_y;
    let divisor_left = n * sum_x2 - sum_x.powf(2.0);
    let divisor_right = n * sum_y2 - sum_y.powf(2.0);
    let divisor = (divisor_left * divisor_right).sqrt();
    dividend / divisor
}

#[test]
fn correlation_test() {
    let data = vec![
        (43.0, 99.0),
        (21.0, 65.0),
        (25.0, 79.0),
        (42.0, 75.0),
        (57.0, 87.0),
        (59.0, 81.0),
    ];
    let result = correlation(&data);
    let expected = 0.529809;
    let diff = (expected - result).abs();
    assert!(diff < 0.0000001);
}

/// # Sum of squares
///
/// The sum, over all observations, of the squared differences of each observation from the overall
/// mean.
pub fn sum_of_squares(data: &Vec<f64>, mu: f64) -> f64 {
    data.iter().map(|n| (n - mu).powf(2.0)).sum()
}

/// # Chi-squared test
///
/// Takes a vector of tuples with expected as first item, and observed as second.
///
/// [Wikipedia article](https://en.wikipedia.org/wiki/Chi-squared_test).
///
/// ## Example
/// ```
/// let data = vec![
///     (25.0, 23.0),
///     (16.0, 20.0),
///     (4.0, 3.0),
///     (24.0, 24.0),
///     (8.0, 10.0),
/// ];
/// assert_eq!(kirstine::chi_squared(&data), 1.91);
/// ```
pub fn chi_squared(data: &Vec<(f64, f64)>) -> f64 {
    data.iter().map(|(e, o)| (e - o).powf(2.0) / e).sum()
}

#[test]
fn chi_squared_test() {
    let data = vec![
        (21.33333334, 29.0),
        (21.33333334, 24.0),
        (21.33333334, 22.0),
        (21.33333334, 19.0),
        (21.33333334, 21.0),
        (21.33333334, 18.0),
        (21.33333334, 19.0),
        (21.33333334, 20.0),
        (21.33333334, 23.0),
        (21.33333334, 18.0),
        (21.33333334, 20.0),
        (21.33333334, 23.0),
    ];
    let result = chi_squared(&data);
    let expected = 5.09375;
    let diff = (result - expected).abs();
    assert!(diff < 0.0000001);
}