1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
// Copyright 2021 Zion Koyl
// Copyright 2021-2023 Jacob Alexander
//
// Licensed under the Apache License, Version 2.0, <LICENSE-APACHE or
// http://apache.org/licenses/LICENSE-2.0> or the MIT license <LICENSE-MIT or
// http://opensource.org/licenses/MIT>, at your option. This file may not be
// copied, modified, or distributed except according to those terms.

#![no_std]

pub mod state;

pub use self::state::{KeyState, State};
use embedded_hal::digital::v2::{InputPin, IoPin, OutputPin, PinState};

#[cfg(feature = "kll-core")]
pub trait KeyScanning<const MAX_EVENTS: usize> {
    fn generate_events(&self, index: usize) -> kll_core::layout::TriggerEventIterator<MAX_EVENTS>;
}

/// Records momentary push button events
///
/// Cycles can be converted to time by multiplying by the scan period (Matrix::period())
#[derive(Copy, Clone, Debug, PartialEq, Eq)]
#[cfg_attr(feature = "defmt", derive(defmt::Format))]
pub enum KeyEvent {
    On {
        /// Cycles since the last state change
        cycles_since_state_change: u32,
    },
    Off {
        /// Key is idle (a key can only be idle in the off state)
        idle: bool,
        /// Cycles since the last state change
        cycles_since_state_change: u32,
    },
}

/// This struct handles scanning and strobing of the key matrix.
///
/// It also handles the debouncing of key input to ensure acurate keypresses are being read.
/// OutputPin's are passed as columns (cols) which are strobed.
/// IoPins are functionally InputPins (rows) which are read. Rows are IoPins in order to drain the
/// row/sense between strobes to prevent stray capacitance.
///
/// ```rust,ignore
/// const CSIZE: usize = 18; // Number of columns
/// const RSIZE: usize = 6; // Number of rows
/// const MSIZE: usize = RSIZE * CSIZE; // Total matrix size
/// // Period of time it takes to re-scan a column (everything must be constant time!)
/// const SCAN_PERIOD_US = 40;
/// // Debounce timer in us. Can only be as precise as a multiple of SCAN_PERIOD_US.
/// // Per-key timer is reset if the raw gpio reading changes for any reason.
/// const DEBOUNCE_US = 5000; // 5 ms
/// // Idle timer in ms. Only valid if the switch is in the off state.
/// const IDLE_MS = 600_0000; // 600 seconds or 10 minutes
///
/// let cols = [
///     pins.strobe1.downgrade(),
///     pins.strobe2.downgrade(),
///     pins.strobe3.downgrade(),
///     pins.strobe4.downgrade(),
///     pins.strobe5.downgrade(),
///     pins.strobe6.downgrade(),
///     pins.strobe7.downgrade(),
///     pins.strobe8.downgrade(),
///     pins.strobe9.downgrade(),
///     pins.strobe10.downgrade(),
///     pins.strobe11.downgrade(),
///     pins.strobe12.downgrade(),
///     pins.strobe13.downgrade(),
///     pins.strobe14.downgrade(),
///     pins.strobe15.downgrade(),
///     pins.strobe16.downgrade(),
///     pins.strobe17.downgrade(),
///     pins.strobe18.downgrade(),
/// ];
///
/// let rows = [
///     pins.sense1.downgrade(),
///     pins.sense2.downgrade(),
///     pins.sense3.downgrade(),
///     pins.sense4.downgrade(),
///     pins.sense5.downgrade(),
///     pins.sense6.downgrade(),
/// ];
///
/// let mut matrix = Matrix::<OutputPin, InputPin, CSIZE, RSIZE, MSIZE, SCAN_PERIOD_US, DEBOUNCE_US,
/// IDLE_MS>::new(cols, rows);
///
/// // Prepare first strobe
/// matrix.next_strobe().unwrap();
///
/// // --> This next part must be done in constant time (SCAN_PERIOD_US) <--
/// let state = matrix.sense().unwrap();
/// matrix.next_strobe().unwrap();
/// ```
pub struct Matrix<
    C: OutputPin,
    R: InputPin,
    const CSIZE: usize,
    const RSIZE: usize,
    const MSIZE: usize,
    const SCAN_PERIOD_US: u32,
    const DEBOUNCE_US: u32,
    const IDLE_MS: u32,
> {
    /// Strobe GPIOs (columns)
    cols: [C; CSIZE],
    /// Sense GPIOs (rows)
    rows: [R; RSIZE],
    /// Current GPIO column being strobed
    cur_strobe: usize,
    /// Recorded state of the entire matrix
    state_matrix: [KeyState<CSIZE, SCAN_PERIOD_US, DEBOUNCE_US, IDLE_MS>; MSIZE],
}

impl<
        C: OutputPin,
        R: InputPin,
        const CSIZE: usize,
        const RSIZE: usize,
        const MSIZE: usize,
        const SCAN_PERIOD_US: u32,
        const DEBOUNCE_US: u32,
        const IDLE_MS: u32,
    > Matrix<C, R, CSIZE, RSIZE, MSIZE, SCAN_PERIOD_US, DEBOUNCE_US, IDLE_MS>
{
    pub fn new<'a, E: 'a>(cols: [C; CSIZE], rows: [R; RSIZE]) -> Result<Self, E>
    where
        C: OutputPin<Error = E>,
        E: core::convert::From<<C as OutputPin>::Error>,
    {
        let state_matrix = [KeyState::<CSIZE, SCAN_PERIOD_US, DEBOUNCE_US, IDLE_MS>::new(); MSIZE];
        let mut res = Self {
            cols,
            rows,
            cur_strobe: CSIZE - 1,
            state_matrix,
        };

        // Reset strobe position and make sure all strobes are off
        res.clear()?;
        Ok(res)
    }

    /// Clears strobes
    /// Resets strobe counter to the last element (so next_strobe starts at 0)
    pub fn clear<'a, E: 'a>(&'a mut self) -> Result<(), E>
    where
        C: OutputPin<Error = E>,
    {
        // Clear all strobes
        for c in self.cols.iter_mut() {
            c.set_low()?;
        }

        // Reset strobe position
        self.cur_strobe = CSIZE - 1;
        Ok(())
    }

    /// Next strobe
    pub fn next_strobe<'a, E: 'a>(&'a mut self) -> Result<usize, E>
    where
        C: OutputPin<Error = E> + IoPin<R, C>,
        R: InputPin<Error = E> + IoPin<R, C>,
        E: core::convert::From<<R as IoPin<R, C>>::Error>
            + core::convert::From<<C as IoPin<R, C>>::Error>,
    {
        // Unset current strobe
        self.cols[self.cur_strobe].set_low()?;

        // Drain stray potential from sense lines
        // NOTE: This is unsafe because the gpio are stored in an array and (likely) do not implement
        //       copy or clone. Since they are in an array, we can't move them either.
        //       Since we're just temporarily sinking the pin and putting it back, this is safe to
        //       do.
        for s in self.rows.iter_mut() {
            let ptr = s as *const R;
            unsafe {
                let row = core::ptr::read(ptr);
                // Temporarily sink sense gpios and reset to sense/read gpio
                row.into_output_pin(PinState::Low)?.into_input_pin()?;
            }
        }

        // Check for roll-over condition
        if self.cur_strobe >= CSIZE - 1 {
            self.cur_strobe = 0;
        } else {
            self.cur_strobe += 1;
        }

        // Set new strobe
        self.cols[self.cur_strobe].set_high()?;

        Ok(self.cur_strobe)
    }

    /// Current strobe
    pub fn strobe(&self) -> usize {
        self.cur_strobe
    }

    /// Sense a column of switches
    ///
    /// Returns the results of each row for the currently strobed column and the measured strobe
    pub fn sense<'a, E: 'a>(&'a mut self) -> Result<([KeyEvent; RSIZE], usize), E>
    where
        E: core::convert::From<<R as InputPin>::Error>,
    {
        let mut res = [KeyEvent::Off {
            idle: false,
            cycles_since_state_change: 0,
        }; RSIZE];

        for (i, r) in self.rows.iter().enumerate() {
            // Read GPIO
            let on = r.is_high()?;
            // Determine matrix index
            let index = self.cur_strobe * RSIZE + i;
            // Record GPIO event and determine current status after debouncing algorithm
            let (keystate, idle, cycles_since_state_change) = self.state_matrix[index].record(on);

            // Assign KeyEvent using the output keystate
            res[i] = if keystate == State::On {
                KeyEvent::On {
                    cycles_since_state_change,
                }
            } else {
                KeyEvent::Off {
                    idle,
                    cycles_since_state_change,
                }
            };
        }

        Ok((res, self.cur_strobe))
    }

    /// Return the KeyState for a given index
    pub fn state(
        &self,
        index: usize,
    ) -> Option<KeyState<CSIZE, SCAN_PERIOD_US, DEBOUNCE_US, IDLE_MS>> {
        if index >= self.state_matrix.len() {
            None
        } else {
            Some(self.state_matrix[index])
        }
    }

    /// Generate event from KeyState
    /// Useful when trying to determine if a key has not been pressed
    pub fn generate_key_event(&self, index: usize) -> Option<KeyEvent> {
        let state = self.state(index);

        state.map(|state| match state.state().0 {
            State::On => KeyEvent::On {
                cycles_since_state_change: state.cycles_since_state_change(),
            },
            State::Off => KeyEvent::Off {
                idle: state.idle(),
                cycles_since_state_change: state.cycles_since_state_change(),
            },
        })
    }
}

#[cfg(feature = "kll-core")]
mod converters {
    #[cfg(feature = "defmt")]
    use defmt::*;
    #[cfg(not(feature = "defmt"))]
    use log::*;

    use crate::*;
    use heapless::Vec;
    use kll_core::layout::TriggerEventIterator;

    impl<
            C: OutputPin,
            R: InputPin,
            const CSIZE: usize,
            const RSIZE: usize,
            const MSIZE: usize,
            const SCAN_PERIOD_US: u32,
            const DEBOUNCE_US: u32,
            const IDLE_MS: u32,
            const MAX_EVENTS: usize,
        > KeyScanning<MAX_EVENTS> for Matrix<C, R, CSIZE, RSIZE, MSIZE, SCAN_PERIOD_US, DEBOUNCE_US, IDLE_MS>
    {
        /// Convert matrix state into a TriggerEvent
        fn generate_events(&self, index: usize) -> TriggerEventIterator<MAX_EVENTS> {
            self.generate_key_event(index)
                .unwrap()
                .trigger_events(index, false)
        }
    }

    impl KeyEvent {
        pub fn trigger_events<const MAX_EVENTS: usize>(
            &self,
            index: usize,
            ignore_off: bool,
        ) -> TriggerEventIterator<MAX_EVENTS> {
            let mut events = Vec::new();

            // Handle on/off events
            match self {
                KeyEvent::On {
                    cycles_since_state_change,
                } => {
                    if *cycles_since_state_change == 0 {
                        trace!("Reading: {} {}", index, self);
                        events
                            .push(kll_core::TriggerEvent::Switch {
                                state: kll_core::trigger::Phro::Press,
                                index: index as u16,
                                last_state: 0,
                            })
                            .unwrap();
                    } else {
                        events
                            .push(kll_core::TriggerEvent::Switch {
                                state: kll_core::trigger::Phro::Hold,
                                index: index as u16,
                                last_state: *cycles_since_state_change,
                            })
                            .unwrap();
                    }
                }
                KeyEvent::Off {
                    cycles_since_state_change,
                    ..
                } => {
                    if *cycles_since_state_change == 0 {
                        trace!("Reading: {} {}", index, self);
                        events
                            .push(kll_core::TriggerEvent::Switch {
                                state: kll_core::trigger::Phro::Release,
                                index: index as u16,
                                last_state: 0,
                            })
                            .unwrap();
                    // Ignore off events unless ignore_off is set
                    } else if !ignore_off {
                        events
                            .push(kll_core::TriggerEvent::Switch {
                                state: kll_core::trigger::Phro::Off,
                                index: index as u16,
                                last_state: *cycles_since_state_change,
                            })
                            .unwrap();
                    }
                }
            }
            TriggerEventIterator::new(events)
        }
    }
}