1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License in the LICENSE-APACHE file or at:
//     https://www.apache.org/licenses/LICENSE-2.0

//! Row / column solver

use std::marker::PhantomData;

use super::{AxisInfo, GridStorage, RowTemp, RulesSetter, RulesSolver, SizeRules};
use crate::geom::{Coord, Rect, Size};
use kas::{Align, AlignHints};

/// Per-child information
pub struct GridChildInfo {
    /// Column index (first column when in a span)
    pub col: u32,
    /// One-past-last index of column span (`col_end = col + 1` without span)
    pub col_end: u32,
    /// Row index (first row when in a span)
    pub row: u32,
    /// One-past-last index of row span (`row_end = row + 1` without span)
    pub row_end: u32,
}

/// A [`RulesSolver`] for grids supporting cell-spans
///
/// This implementation relies on the caller to provide storage for solver data.
pub struct GridSolver<CSR, RSR, S: GridStorage> {
    axis: AxisInfo,
    col_spans: CSR,
    row_spans: RSR,
    next_col_span: usize,
    next_row_span: usize,
    _s: PhantomData<S>,
}

impl<CSR: Default, RSR: Default, S: GridStorage> GridSolver<CSR, RSR, S> {
    /// Construct.
    ///
    /// Argument order is consistent with other [`RulesSolver`]s.
    ///
    /// - `axis`: `AxisInfo` instance passed into `size_rules`
    /// - `(cols, rows)`: number of columns and rows
    /// - `storage`: reference to persistent storage
    pub fn new(axis: AxisInfo, (cols, rows): (usize, usize), storage: &mut S) -> Self {
        let col_spans = CSR::default();
        let row_spans = RSR::default();

        storage.set_dims(cols, rows);

        let mut solver = GridSolver {
            axis,
            col_spans,
            row_spans,
            next_col_span: 0,
            next_row_span: 0,
            _s: Default::default(),
        };
        solver.prepare(storage);
        solver
    }

    fn prepare(&mut self, storage: &mut S) {
        if self.axis.has_fixed {
            if self.axis.is_vertical() {
                let (rules, widths) = storage.rules_and_widths();
                SizeRules::solve_seq_total(widths, rules, self.axis.other_axis);
            } else {
                let (rules, heights) = storage.rules_and_heights();
                SizeRules::solve_seq_total(heights, rules, self.axis.other_axis);
            }
        }

        if self.axis.is_horizontal() {
            for n in 0..storage.width_rules().len() {
                storage.width_rules()[n] = SizeRules::EMPTY;
            }
        } else {
            for n in 0..storage.height_rules().len() {
                storage.height_rules()[n] = SizeRules::EMPTY;
            }
        }
    }
}

impl<CSR, RSR, S: GridStorage> RulesSolver for GridSolver<CSR, RSR, S>
where
    CSR: AsRef<[(SizeRules, u32, u32)]> + AsMut<[(SizeRules, u32, u32)]>,
    RSR: AsRef<[(SizeRules, u32, u32)]> + AsMut<[(SizeRules, u32, u32)]>,
{
    type Storage = S;
    type ChildInfo = GridChildInfo;

    fn for_child<CR: FnOnce(AxisInfo) -> SizeRules>(
        &mut self,
        storage: &mut Self::Storage,
        child_info: Self::ChildInfo,
        child_rules: CR,
    ) {
        if self.axis.has_fixed {
            if self.axis.is_horizontal() {
                self.axis.other_axis = ((child_info.row + 1)..child_info.row_end)
                    .fold(storage.heights()[child_info.row as usize], |h, i| {
                        h + storage.heights()[i as usize]
                    });
            } else {
                self.axis.other_axis = ((child_info.col + 1)..child_info.col_end)
                    .fold(storage.widths()[child_info.col as usize], |w, i| {
                        w + storage.widths()[i as usize]
                    });
            }
        }
        let child_rules = child_rules(self.axis);
        if self.axis.is_horizontal() {
            if child_info.col_end > child_info.col + 1 {
                let span = &mut self.col_spans.as_mut()[self.next_col_span];
                span.0.max_with(child_rules);
                span.1 = child_info.col;
                span.2 = child_info.col_end;
                self.next_col_span += 1;
            } else {
                storage.width_rules()[child_info.col as usize].max_with(child_rules);
            }
        } else {
            if child_info.row_end > child_info.row + 1 {
                let span = &mut self.row_spans.as_mut()[self.next_row_span];
                span.0.max_with(child_rules);
                span.1 = child_info.row;
                span.2 = child_info.row_end;
                self.next_row_span += 1;
            } else {
                storage.height_rules()[child_info.row as usize].max_with(child_rules);
            }
        };
    }

    fn finish(mut self, storage: &mut Self::Storage) -> SizeRules {
        fn calculate(
            cols: usize,
            widths: &mut [SizeRules],
            spans: &mut [(SizeRules, u32, u32)],
        ) -> SizeRules {
            // spans: &mut [(rules, begin, end)]

            // To avoid losing StretchPolicy, we distribute this first
            const BASE_WEIGHT: u32 = 100;
            const SPAN_WEIGHT: u32 = 10;
            let mut scores: Vec<u32> = (&widths[0..(widths.len() - 1)])
                .iter()
                .map(|w| w.stretch() as u32 * BASE_WEIGHT)
                .collect();
            for span in spans.iter() {
                let w = span.0.stretch() as u32 * SPAN_WEIGHT;
                for score in &mut scores[(span.1 as usize)..(span.2 as usize)] {
                    *score += w;
                }
            }
            for span in spans.iter() {
                let range = (span.1 as usize)..(span.2 as usize);
                span.0
                    .distribute_stretch_over_by(&mut widths[range.clone()], &scores[range]);
            }

            // We merge all overlapping spans in arbitrary order.
            let (mut i, mut j) = (0, 1);
            let mut len = spans.len();
            while j < len {
                let (first, second) = if spans[i].1 <= spans[j].1 {
                    (i, j)
                } else {
                    (j, i)
                };
                let first_end = spans[first].2 as usize;
                let second_begin = spans[second].1 as usize;
                if first_end <= second_begin {
                    j += 1;
                    if j >= len {
                        i += 1;
                        j = i + 1;
                    }
                    continue;
                }

                // Internal margins would be lost; handle those first.
                widths[second_begin].include_margins((spans[second].0.margins().0, 0));
                widths[first_end - 1].include_margins((0, spans[first].0.margins().1));

                let overlap_sum = widths[second_begin..first_end].iter().sum();
                spans[first].0.sub_add(overlap_sum, spans[second].0);
                debug_assert!(spans[first].1 <= spans[second].1);
                spans[first].2 = spans[first].2.max(spans[second].2);

                spans.swap(second, len - 1);
                len -= 1;
                if j >= len {
                    i += 1;
                    j = i + 1;
                }
            }

            // We are left with non-overlapping spans.
            // For each span, we ensure cell widths are sufficiently large.
            for span in &spans[..len] {
                let rules = span.0;
                let begin = span.1 as usize;
                let end = span.2 as usize;
                rules.distribute_span_over(&mut widths[begin..end]);
            }

            let rules = widths[0..cols].iter().sum();
            widths[cols] = rules;
            rules
        }

        if self.axis.is_horizontal() {
            let cols = storage.width_rules().len() - 1;
            calculate(cols, storage.width_rules(), self.col_spans.as_mut())
        } else {
            let rows = storage.height_rules().len() - 1;
            calculate(rows, storage.height_rules(), self.row_spans.as_mut())
        }
    }
}

/// A [`RulesSetter`] for grids supporting cell-spans
pub struct GridSetter<RT: RowTemp, CT: RowTemp, S: GridStorage> {
    w_offsets: RT,
    h_offsets: CT,
    pos: Coord,
    _s: PhantomData<S>,
}

impl<RT: RowTemp, CT: RowTemp, S: GridStorage> GridSetter<RT, CT, S> {
    /// Construct
    ///
    /// Argument order is consistent with other [`RulesSetter`]s.
    ///
    /// -   `rect`: the [`Rect`] within which to position children
    /// -   `(cols, rows)`: number of columns and rows
    /// -   `align`: alignment hints
    /// -   `storage`: access to the solver's storage
    pub fn new(
        rect: Rect,
        (cols, rows): (usize, usize),
        align: AlignHints,
        storage: &mut S,
    ) -> Self {
        let mut w_offsets = RT::default();
        w_offsets.set_len(cols);
        let mut h_offsets = CT::default();
        h_offsets.set_len(rows);

        storage.set_dims(cols, rows);

        if cols > 0 {
            let align = align.horiz.unwrap_or(Align::Stretch);
            let (rules, widths) = storage.rules_and_widths();
            let ideal = rules[cols].ideal_size();

            w_offsets.as_mut()[0] = 0;
            if align != Align::Stretch && rect.size.0 > ideal {
                let extra = rect.size.0 - ideal;
                w_offsets.as_mut()[0] = match align {
                    Align::Default | Align::TL | Align::Stretch => 0,
                    Align::Centre => extra / 2,
                    Align::BR => extra,
                };
            }

            SizeRules::solve_seq_total(widths, rules, rect.size.0);
            for i in 1..w_offsets.as_mut().len() {
                let i1 = i - 1;
                let m1 = storage.width_rules()[i1].margins().1;
                let m0 = storage.width_rules()[i].margins().0;
                w_offsets.as_mut()[i] =
                    w_offsets.as_mut()[i1] + storage.widths()[i1] + m1.max(m0) as u32;
            }
        }

        if rows > 0 {
            let align = align.vert.unwrap_or(Align::Stretch);
            let (rules, heights) = storage.rules_and_heights();
            let ideal = rules[rows].ideal_size();

            h_offsets.as_mut()[0] = 0;
            if align != Align::Stretch && rect.size.1 > ideal {
                let extra = rect.size.1 - ideal;
                h_offsets.as_mut()[0] = match align {
                    Align::Default | Align::TL | Align::Stretch => 0,
                    Align::Centre => extra / 2,
                    Align::BR => extra,
                };
            }

            SizeRules::solve_seq_total(heights, rules, rect.size.1);
            for i in 1..h_offsets.as_mut().len() {
                let i1 = i - 1;
                let m1 = storage.height_rules()[i1].margins().1;
                let m0 = storage.height_rules()[i].margins().0;
                h_offsets.as_mut()[i] =
                    h_offsets.as_mut()[i1] + storage.heights()[i1] + m1.max(m0) as u32;
            }
        }

        GridSetter {
            w_offsets,
            h_offsets,
            pos: rect.pos,
            _s: Default::default(),
        }
    }
}

impl<RT: RowTemp, CT: RowTemp, S: GridStorage> RulesSetter for GridSetter<RT, CT, S> {
    type Storage = S;
    type ChildInfo = GridChildInfo;

    fn child_rect(&mut self, storage: &mut Self::Storage, info: Self::ChildInfo) -> Rect {
        let x = self.w_offsets.as_mut()[info.col as usize] as i32;
        let y = self.h_offsets.as_mut()[info.row as usize] as i32;
        let pos = self.pos + Coord(x, y);

        let i1 = info.col_end as usize - 1;
        let w = storage.widths()[i1] + self.w_offsets.as_mut()[i1]
            - self.w_offsets.as_mut()[info.col as usize];
        let i1 = info.row_end as usize - 1;
        let h = storage.heights()[i1] + self.h_offsets.as_mut()[i1]
            - self.h_offsets.as_mut()[info.row as usize];
        let size = Size(w, h);

        Rect { pos, size }
    }

    fn maximal_rect_of(&mut self, _storage: &mut Self::Storage, _index: Self::ChildInfo) -> Rect {
        unimplemented!()
    }
}