1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189

//! ####  Chaotic testing harness
//!
//! **Kaos** is a chaotic testing harness to test your services against random failures.
//! It allows you to add points to your code to crash sporadically and
//! harness asserts availability and fault tolerance of your services by seeking
//! minimum time between failures, fail points, and randomized runs.
//!
//! Kaos is equivalent of Chaos Monkey for the Rust ecosystem. But it is more smart to find the closest MTBF based on previous runs.
//! This is dependable system practice. For more information please visit [Chaos engineering](https://en.wikipedia.org/wiki/Chaos_engineering).
//!
//! # Test Setup
//!
//! It is better to separate resilience tests.
//! Create a directory that will hold all chaos tests. In our example it will be `kaos-tests`.
//!
//! A minimal launcher for kaos setup looks like this:
//!
//! ```
//! #[test]
//! fn chaos_tests() {
//!     let k = kaos::Runs::new();
//!
//!     for entry in fs::read_dir("kaos-tests").unwrap() {
//!         let entry = entry.unwrap();
//!         let path = entry.path();
//!
//!         // Every service run should be available at least 2 seconds
//!         k.available(path, Duration::from_secs(2));
//!     }
//! }
//! ```
//!
//! and in your Cargo.toml
//!
//! ```toml
//! [[test]]
//! name = "chaos_tests"
//! path = "kaos-tests/launcher.rs"
//! ```
//!
//! ## Definining flunks
//! In kaos there is a concept of [flunk]. Every flunk is a point of failure with panic. This can be redefinable.
//! After adding kaos as dependency you can add flunk points to define fallible operations or crucial points that system should continue its operation.
//!
//! Basic flunk is like:
//! ```rust
//! use kaos::flunk;
//! fn vec_check(v: &Vec<usize>) {
//!   if v.len() == 3 {
//!     flunk!("fail-when-three-elems");
//!   }
//! }
//! ```
//! This flunk point will be used later by kaos.
//!
//! ## Writing tests
//! Test harness will execute tests marked by a launcher. An example test for the flunk mentioned above is like this:
//! ```
//! # use std::panic;
//! # use kaos::flunk;
//! # fn vec_check(v: &Vec<usize>) {
//! #   if v.len() == 3 {
//! #     flunk!("fail-when-three-elems");
//! #   }
//! # }
//! use kaos::kaostest;
//!
//! kaostest!("fail-when-three-elems",
//!          {
//!              panic::catch_unwind(|| {
//!                let mut v = &mut vec![];
//!                loop {
//!                   v.push(1);
//!                   vec_check(v);
//!                }
//!              });
//!          }
//! );
//! ```
//!
//! That's all, now what you have to do is run with `cargo test`.
//!
//! Kaos is using the same approach that [trybuild](https://docs.rs/trybuild) has.
//! Instead of being compiler-like test harness, it has diverged to be chaos engineering
//! oriented harness.

#![doc(
    html_logo_url = "https://raw.githubusercontent.com/vertexclique/kaos/master/img/achaos.gif"
)]

extern crate humantime;

#[macro_use]
mod term;

#[macro_use]
mod path;

mod cargo;
mod dependencies;
mod diff;
mod env;
mod error;
mod features;
mod manifest;
mod message;
mod normalize;
mod run;
mod rustflags;
mod macros;

use std::cell::RefCell;
use std::path::{Path, PathBuf};
use std::{time::Duration, thread};

#[doc(hidden)]
pub use fail::eval as flunker;
#[doc(hidden)]
pub use fail::cfg as flunker_cfg;
#[doc(hidden)]
pub use fail::FailScenario as KaosFailScenario;


pub use macros::*;

///
/// Chaotic runs test setup
#[derive(Debug)]
pub struct Runs {
    runner: RefCell<Runner>,
}

#[derive(Debug)]
struct Runner {
    tests: Vec<Test>,
}

#[derive(Clone, Debug)]
struct Test {
    path: PathBuf,
    duration: Option<Duration>,
    max_surge: isize,
    expected: Expected,
}

#[derive(Copy, Clone, Debug)]
enum Expected {
    Available,
    Chaotic
}

impl Runs {
    #[allow(clippy::new_without_default)]
    pub fn new() -> Self {
        Runs {
            runner: RefCell::new(Runner { tests: Vec::new() }),
        }
    }

    pub fn available<P: AsRef<Path>>(&self, path: P, duration: Duration) {
        self.runner.borrow_mut().tests.push(Test {
            path: path.as_ref().to_owned(),
            duration: Some(duration),
            max_surge: !0,
            expected: Expected::Available,
        });
    }

    pub fn chaotic<P: AsRef<Path>>(&self, path: P, run_count: usize, max_surge: usize) {
        (0..run_count).into_iter().for_each(|_| {
            self.runner.borrow_mut().tests.push(Test {
                path: path.as_ref().to_owned(),
                duration: None,
                max_surge: max_surge as isize,
                expected: Expected::Chaotic,
            });
        });
    }
}

#[doc(hidden)]
impl Drop for Runs {
    fn drop(&mut self) {
        if !thread::panicking() {
            self.runner.borrow_mut().run();
        }
    }
}