1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
//! A library for the handling and analysis of Japanese text, particularly
//! Kanji. It can be used to find the density of Kanji in given texts according
//! to their *Level* classification, as defined by the Japan Kanji Aptitude
//! Testing Foundation (日本漢字能力検定協会).
//!
//! The Kanji data presented here matches the Foundation's official 2020
//! February charts. Note that [some Kanji had their levels changed][changed]
//! (pdf) as of 2020.
//!
//! # Usage
//!
//! Two main useful types are [`Character`] and [`Kanji`].
//!
//! ### Reading Japanese Text
//!
//! To reinterpret every `char` of the input into a [`Character`] we can reason
//! about:
//!
//! ```
//! use std::fs;
//! use kanji::Character;
//!
//! let cs: Option<Vec<Character>> = fs::read_to_string("your-text.txt")
//!   .map(|content| content.chars().map(Character::new).collect())
//!   .ok();
//! ```
//!
//! But maybe we're just interested in the [`Kanji`]:
//!
//! ```
//! use std::fs;
//! use kanji::Kanji;
//!
//! let ks: Option<Vec<Kanji>> = fs::read_to_string("your-text.txt")
//!   .map(|content| content.chars().filter_map(Kanji::new).collect())
//!   .ok();
//! ```
//!
//! Alongside normal pattern matching, the [`Character::kanji`] method can also
//! help us extract [`Kanji`] values.
//!
//! ### Filtering
//!
//! In general, when we want to reduce a text to a single [`Character`] subtype,
//! we can `filter`:
//!
//! ```
//! let orig = "そこで犬が寝ている";
//!
//! let ks: String = orig.chars().filter(kanji::is_kanji).collect();
//! assert_eq!("犬寝", ks);
//!
//! let hs: String = orig.chars().filter(kanji::is_hiragana).collect();
//! assert_eq!("そこでがている", hs);
//! ```
//!
//! ### Level Analysis
//!
//! To find out how many Kanji of each exam level belong to some text:
//!
//! ```
//! let level_table = kanji::level_table();
//! let texts = vec![
//!     "非常に面白い文章",
//!     "誰でも読んだ事のある名作",
//!     "飛行機で空を飛ぶ",
//! ];
//!
//! for t in texts {
//!     let counts = kanji::kanji_counts(t, &level_table);
//!     println!("{:#?}", counts);
//! }
//! ```
//!
//! And if you want to know *what* the Kanji were from a particular level:
//!
//! ```
//! let level_table = kanji::level_table();
//! let text = "日常生活では、鮫に遭う事は基本的にない。";
//!
//! let ks: String = text
//!     .chars()
//!     // Filter out all chars that aren't Kanji.
//!     .filter_map(kanji::Kanji::new)
//!     // Preserve only those that appear in Level 10.
//!     .filter_map(|k| match level_table.get(&k) {
//!         Some(kanji::Level::Ten) => Some(k.get()),
//!         _ => None,
//!     })
//!     // Fold them all back into a String.
//!     .collect();
//!
//! assert_eq!("日生本", ks);
//! ```
//!
//! # Notes on Unicode
//!
//! All Japanese characters, Kanji or otherwise, are a single Unicode Scalar
//! Value, and thus can be safely represented by a single internal `char`.
//!
//! Further, the ordering of Kanji in the official Foundation lists is in no way
//! related to their ordering in Unicode, since in Unicode, Kanji are grouped by
//! radical. So:
//!
//! ```
//! use kanji::exam_lists;
//!
//! let same_as_uni = exam_lists::LEVEL_10.chars().max() < exam_lists::LEVEL_09.chars().min();
//! assert!(!same_as_uni);
//! ```
//!
//! # Features
//! - `serde`: Enable `serde` trait implementations.
//!
//! # Resources
//! - [CJK Unicode Chart](https://www.unicode.org/charts/PDF/U4E00.pdf) (pdf)
//! - [StackOverflow: Unicode Ranges for Japanese](https://stackoverflow.com/q/19899554/643684)
//! - [級別漢字表](https://www.kanken.or.jp/kanken/outline/data/outline_degree_national_list20200217.pdf) (pdf)
//!
//! [changed]: https://www.kanken.or.jp/kanken/topics/data/alterclassofkanji2020.pdf
//! [`Character`]: enum.Character.html
//! [`Character::kanji`]: enum.Character.html#method.kanji
//! [`Kanji`]: struct.Kanji.html

#![doc(html_root_url = "https://docs.rs/kanji/1.1.0")]

use std::char;
use std::collections::HashMap;

#[cfg(feature = "serde")]
use serde::de::{Error, Unexpected, Visitor};
#[cfg(feature = "serde")]
use serde::{Deserialize, Deserializer, Serialize, Serializer};
#[cfg(feature = "serde")]
use std::fmt;

/// A complete list of all Kanji in every level of the exam.
pub mod exam_lists;

/// A single symbol of Kanji, also known as a [CJK Unified Ideograph][cjk].
///
/// Japanese Kanji were borrowed from China over several waves during the last
/// 1,500 years. Japan declares 2,136 of these as their standard set, with rarer
/// characters being the domain of place names, academia and writers.
///
/// Japanese has many Japan-only Kanji. Common ones include:
///
/// - 畑 (a type of rice field)
/// - 峠 (a narrow mountain pass)
/// - 働 (to do physical labour)
///
/// [cjk]: https://en.wikipedia.org/wiki/Han_unification
#[derive(Debug, PartialEq, Eq, PartialOrd, Ord, Hash, Copy, Clone)]
pub struct Kanji(char);

impl Kanji {
    /// Attempt to form a `Kanji`. Will fail if the given `char` is out of the
    /// Unicode range that Japanese text inhabits.
    ///
    /// ```
    /// use kanji::Kanji;
    ///
    /// assert_eq!(Some('志'), Kanji::new('志').map(|k| k.get()));
    /// assert_eq!(None, Kanji::new('a'));
    /// ```
    pub fn new(c: char) -> Option<Kanji> {
        if is_kanji(&c) {
            Some(Kanji(c))
        } else {
            None
        }
    }

    /// Pull out the inner `char`.
    pub fn get(&self) -> char {
        self.0
    }
}

#[cfg(feature = "serde")]
impl Serialize for Kanji {
    fn serialize<S: Serializer>(&self, serializer: S) -> Result<S::Ok, S::Error> {
        serializer.serialize_char(self.0)
    }
}

#[cfg(feature = "serde")]
impl<'de> Deserialize<'de> for Kanji {
    fn deserialize<D>(deserializer: D) -> Result<Kanji, D::Error>
    where
        D: Deserializer<'de>,
    {
        Ok(deserializer.deserialize_char(KanjiVisitor)?)
    }
}

#[cfg(feature = "serde")]
struct KanjiVisitor;

#[cfg(feature = "serde")]
impl<'de> Visitor<'de> for KanjiVisitor {
    type Value = Kanji;

    fn expecting(&self, formatter: &mut fmt::Formatter) -> fmt::Result {
        write!(formatter, "a character in the legal UTF8 range")
    }

    fn visit_char<E: Error>(self, v: char) -> Result<Kanji, E> {
        Kanji::new(v).ok_or(Error::invalid_value(Unexpected::Char(v), &self))
    }

    fn visit_str<E: Error>(self, v: &str) -> Result<Kanji, E> {
        let mut iter = v.chars();
        match (iter.next(), iter.next()) {
            (Some(c), None) => self.visit_char(c),
            _ => Err(Error::invalid_value(Unexpected::Str(v), &self)),
        }
    }
}

/// A Hiragana character, from あ to ん.
///
/// These are learned first by Japanese school children and foreign learners,
/// and are used most often for grammatical word endings and prepositions. Some
/// women's first names are written purely in Hiragana, as the characters
/// themselves have a soft, flowing feel to them (very much unlike the blocky,
/// angular [`Katakana`](struct.Katakana.html)).
#[derive(Debug, PartialEq, Eq, PartialOrd, Ord, Hash, Copy, Clone)]
pub struct Hiragana(char);

impl Hiragana {
    /// Attempt to form a `Hiragana`. Will fail if the given `char` is out of
    /// the expected Unicode range.
    ///
    /// ```
    /// use kanji::Hiragana;
    ///
    /// assert_eq!(Some('あ'), Hiragana::new('あ').map(|k| k.get()));
    /// assert_eq!(None, Hiragana::new('鼠'));
    /// assert_eq!(None, Hiragana::new('a'));
    /// ```
    pub fn new(c: char) -> Option<Hiragana> {
        if is_hiragana(&c) {
            Some(Hiragana(c))
        } else {
            None
        }
    }

    /// Pull out the inner `char`.
    pub fn get(&self) -> char {
        self.0
    }
}

#[cfg(feature = "serde")]
impl Serialize for Hiragana {
    fn serialize<S: Serializer>(&self, serializer: S) -> Result<S::Ok, S::Error> {
        serializer.serialize_char(self.0)
    }
}

#[cfg(feature = "serde")]
impl<'de> Deserialize<'de> for Hiragana {
    fn deserialize<D>(deserializer: D) -> Result<Hiragana, D::Error>
    where
        D: Deserializer<'de>,
    {
        Ok(deserializer.deserialize_char(HiraganaVisitor)?)
    }
}

#[cfg(feature = "serde")]
struct HiraganaVisitor;

#[cfg(feature = "serde")]
impl<'de> Visitor<'de> for HiraganaVisitor {
    type Value = Hiragana;

    fn expecting(&self, formatter: &mut fmt::Formatter) -> fmt::Result {
        write!(formatter, "a character in the legal UTF8 range")
    }

    fn visit_char<E: Error>(self, v: char) -> Result<Hiragana, E> {
        Hiragana::new(v).ok_or(Error::invalid_value(Unexpected::Char(v), &self))
    }

    fn visit_str<E: Error>(self, v: &str) -> Result<Hiragana, E> {
        let mut iter = v.chars();
        match (iter.next(), iter.next()) {
            (Some(c), None) => self.visit_char(c),
            _ => Err(Error::invalid_value(Unexpected::Str(v), &self)),
        }
    }
}

/// A Katakana character, from ア to ン.
///
/// These are typically learned after [`Hiragana`](struct.Hiragana.html), and
/// are used to represent foreign names, sound effects, and occasionally words
/// whose Kanji are "difficult". Two such examples are ネズミ (鼠) and アリ (蟻).
///
/// It used to be common to use Katakana as Hiragana are used today, so the
/// phrase君と街を歩きたい would have been written 君ト街ヲ歩キタイ. Admittedly
/// strange to modern eyes!
#[derive(Debug, PartialEq, Eq, PartialOrd, Ord, Hash, Copy, Clone)]
pub struct Katakana(char);

impl Katakana {
    /// Attempt to form a `Katakana`. Will fail if the given `char` is out of
    /// the expected Unicode range.
    ///
    /// ```
    /// use kanji::Katakana;
    ///
    /// assert_eq!(Some('ア'), Katakana::new('ア').map(|k| k.get()));
    /// assert_eq!(None, Katakana::new('匙'));
    /// assert_eq!(None, Katakana::new('a'));
    /// ```
    pub fn new(c: char) -> Option<Katakana> {
        if is_katakana(&c) {
            Some(Katakana(c))
        } else {
            None
        }
    }

    /// Pull out the inner `char`.
    pub fn get(&self) -> char {
        self.0
    }
}

#[cfg(feature = "serde")]
impl Serialize for Katakana {
    fn serialize<S: Serializer>(&self, serializer: S) -> Result<S::Ok, S::Error> {
        serializer.serialize_char(self.0)
    }
}

#[cfg(feature = "serde")]
impl<'de> Deserialize<'de> for Katakana {
    fn deserialize<D>(deserializer: D) -> Result<Katakana, D::Error>
    where
        D: Deserializer<'de>,
    {
        Ok(deserializer.deserialize_char(KatakanaVisitor)?)
    }
}

#[cfg(feature = "serde")]
struct KatakanaVisitor;

#[cfg(feature = "serde")]
impl<'de> Visitor<'de> for KatakanaVisitor {
    type Value = Katakana;

    fn expecting(&self, formatter: &mut fmt::Formatter) -> fmt::Result {
        write!(formatter, "a character in the legal UTF8 range")
    }

    fn visit_char<E: Error>(self, v: char) -> Result<Katakana, E> {
        Katakana::new(v).ok_or(Error::invalid_value(Unexpected::Char(v), &self))
    }

    fn visit_str<E: Error>(self, v: &str) -> Result<Katakana, E> {
        let mut iter = v.chars();
        match (iter.next(), iter.next()) {
            (Some(c), None) => self.visit_char(c),
            _ => Err(Error::invalid_value(Unexpected::Str(v), &self)),
        }
    }
}

/// Japanese symbols and punctuation.
#[derive(Debug, PartialEq, Eq, PartialOrd, Ord, Hash, Copy, Clone)]
pub struct Punctuation(char);

impl Punctuation {
    /// Attempt to form a `Punctuation`. Will fail if the given `char` is out of
    /// the expected Unicode range.
    ///
    /// ```
    /// use kanji::Punctuation;
    ///
    /// assert_eq!(Some('。'), Punctuation::new('。').map(|k| k.get()));
    /// assert_eq!(None, Punctuation::new('a'));
    /// ```
    pub fn new(c: char) -> Option<Punctuation> {
        if is_japanese_punct(&c) {
            Some(Punctuation(c))
        } else {
            None
        }
    }

    /// Pull out the inner `char`.
    pub fn get(&self) -> char {
        self.0
    }
}

#[cfg(feature = "serde")]
impl Serialize for Punctuation {
    fn serialize<S: Serializer>(&self, serializer: S) -> Result<S::Ok, S::Error> {
        serializer.serialize_char(self.0)
    }
}

#[cfg(feature = "serde")]
impl<'de> Deserialize<'de> for Punctuation {
    fn deserialize<D>(deserializer: D) -> Result<Punctuation, D::Error>
    where
        D: Deserializer<'de>,
    {
        Ok(deserializer.deserialize_char(PunctuationVisitor)?)
    }
}

#[cfg(feature = "serde")]
struct PunctuationVisitor;

#[cfg(feature = "serde")]
impl<'de> Visitor<'de> for PunctuationVisitor {
    type Value = Punctuation;

    fn expecting(&self, formatter: &mut fmt::Formatter) -> fmt::Result {
        write!(formatter, "a character in the legal UTF8 range")
    }

    fn visit_char<E: Error>(self, v: char) -> Result<Punctuation, E> {
        Punctuation::new(v).ok_or(Error::invalid_value(Unexpected::Char(v), &self))
    }

    fn visit_str<E: Error>(self, v: &str) -> Result<Punctuation, E> {
        let mut iter = v.chars();
        match (iter.next(), iter.next()) {
            (Some(c), None) => self.visit_char(c),
            _ => Err(Error::invalid_value(Unexpected::Str(v), &self)),
        }
    }
}

/// Japanese full-width alphanumeric characters and a few punctuation symbols.
#[derive(Debug, PartialEq, Eq, PartialOrd, Ord, Hash, Copy, Clone)]
pub struct AlphaNum(char);

impl AlphaNum {
    /// Attempt to form a `AlphaNum`. Will fail if the given `char` is out of
    /// the expected Unicode range.
    ///
    /// ```
    /// use kanji::AlphaNum;
    ///
    /// assert_eq!(Some('A'), AlphaNum::new('A').map(|k| k.get()));
    /// assert_eq!(Some('*'), AlphaNum::new('*').map(|k| k.get()));
    /// assert_eq!(None, AlphaNum::new('a'));
    /// ```
    pub fn new(c: char) -> Option<AlphaNum> {
        if is_alphanum(&c) {
            Some(AlphaNum(c))
        } else {
            None
        }
    }

    /// Pull out the inner `char`.
    pub fn get(&self) -> char {
        self.0
    }
}

#[cfg(feature = "serde")]
impl Serialize for AlphaNum {
    fn serialize<S: Serializer>(&self, serializer: S) -> Result<S::Ok, S::Error> {
        serializer.serialize_char(self.0)
    }
}

#[cfg(feature = "serde")]
impl<'de> Deserialize<'de> for AlphaNum {
    fn deserialize<D>(deserializer: D) -> Result<AlphaNum, D::Error>
    where
        D: Deserializer<'de>,
    {
        Ok(deserializer.deserialize_char(AlphaNumVisitor)?)
    }
}

#[cfg(feature = "serde")]
struct AlphaNumVisitor;

#[cfg(feature = "serde")]
impl<'de> Visitor<'de> for AlphaNumVisitor {
    type Value = AlphaNum;

    fn expecting(&self, formatter: &mut fmt::Formatter) -> fmt::Result {
        write!(formatter, "a character in the legal UTF8 range")
    }

    fn visit_char<E: Error>(self, v: char) -> Result<AlphaNum, E> {
        AlphaNum::new(v).ok_or(Error::invalid_value(Unexpected::Char(v), &self))
    }

    fn visit_str<E: Error>(self, v: &str) -> Result<AlphaNum, E> {
        let mut iter = v.chars();
        match (iter.next(), iter.next()) {
            (Some(c), None) => self.visit_char(c),
            _ => Err(Error::invalid_value(Unexpected::Str(v), &self)),
        }
    }
}

/// A standard ASCII character.
#[derive(Debug, PartialEq, Eq, PartialOrd, Ord, Hash, Copy, Clone)]
pub struct ASCII(char);

impl ASCII {
    /// Attempt to form a `ASCII`. Will fail if the given `char` is out of
    /// the expected Unicode range.
    ///
    /// ```
    /// use kanji::ASCII;
    ///
    /// assert_eq!(Some('a'), ASCII::new('a').map(|k| k.get()));
    /// assert_eq!(None, ASCII::new('あ'));
    /// ```
    pub fn new(c: char) -> Option<ASCII> {
        if char::is_ascii(&c) {
            Some(ASCII(c))
        } else {
            None
        }
    }

    /// Pull out the inner `char`.
    pub fn get(&self) -> char {
        self.0
    }
}

#[cfg(feature = "serde")]
impl Serialize for ASCII {
    fn serialize<S: Serializer>(&self, serializer: S) -> Result<S::Ok, S::Error> {
        serializer.serialize_char(self.0)
    }
}

#[cfg(feature = "serde")]
impl<'de> Deserialize<'de> for ASCII {
    fn deserialize<D>(deserializer: D) -> Result<ASCII, D::Error>
    where
        D: Deserializer<'de>,
    {
        Ok(deserializer.deserialize_char(ASCIIVisitor)?)
    }
}

#[cfg(feature = "serde")]
struct ASCIIVisitor;

#[cfg(feature = "serde")]
impl<'de> Visitor<'de> for ASCIIVisitor {
    type Value = ASCII;

    fn expecting(&self, formatter: &mut fmt::Formatter) -> fmt::Result {
        write!(formatter, "a character in the legal UTF8 range")
    }

    fn visit_char<E: Error>(self, v: char) -> Result<ASCII, E> {
        ASCII::new(v).ok_or(Error::invalid_value(Unexpected::Char(v), &self))
    }

    fn visit_str<E: Error>(self, v: &str) -> Result<ASCII, E> {
        let mut iter = v.chars();
        match (iter.next(), iter.next()) {
            (Some(c), None) => self.visit_char(c),
            _ => Err(Error::invalid_value(Unexpected::Str(v), &self)),
        }
    }
}

/// General categories for characters, at least as is useful for thinking about
/// Japanese.
///
/// Japanese "full-width" numbers and letters are counted as `AlphaNum`, whereas
/// "normal" ASCII characters have the `ASCII` variant.
#[derive(Debug, PartialEq, Eq, PartialOrd, Ord, Hash, Copy, Clone)]
pub enum Character {
    Kanji(Kanji),
    Hiragana(Hiragana),
    Katakana(Katakana),
    Punctuation(Punctuation),
    AlphaNum(AlphaNum),
    ASCII(ASCII),
    Other(char),
}

impl Character {
    /// Form a new `Character` from some `char`.
    pub fn new(c: char) -> Character {
        Kanji::new(c)
            .map(Character::Kanji)
            .or_else(|| Hiragana::new(c).map(Character::Hiragana))
            .or_else(|| Katakana::new(c).map(Character::Katakana))
            .or_else(|| Punctuation::new(c).map(Character::Punctuation))
            .or_else(|| AlphaNum::new(c).map(Character::AlphaNum))
            .or_else(|| ASCII::new(c).map(Character::ASCII))
            .unwrap_or_else(|| Character::Other(c))
    }

    /// A convenience method for attempting to extract a possible
    /// [`Kanji`](struct.Kanji.html).
    pub fn kanji(&self) -> Option<Kanji> {
        match self {
            Character::Kanji(k) => Some(*k),
            _ => None,
        }
    }

    /// Pull out the inner `char`.
    pub fn get(&self) -> char {
        match self {
            Character::Kanji(c) => c.get(),
            Character::Hiragana(c) => c.get(),
            Character::Katakana(c) => c.get(),
            Character::Punctuation(c) => c.get(),
            Character::AlphaNum(c) => c.get(),
            Character::ASCII(c) => c.get(),
            Character::Other(c) => *c,
        }
    }
}

#[cfg(feature = "serde")]
impl Serialize for Character {
    fn serialize<S: Serializer>(&self, serializer: S) -> Result<S::Ok, S::Error> {
        serializer.serialize_char(self.get())
    }
}

#[cfg(feature = "serde")]
impl<'de> Deserialize<'de> for Character {
    fn deserialize<D>(deserializer: D) -> Result<Character, D::Error>
    where
        D: Deserializer<'de>,
    {
        Ok(deserializer.deserialize_char(CharacterVisitor)?)
    }
}

#[cfg(feature = "serde")]
struct CharacterVisitor;

#[cfg(feature = "serde")]
impl<'de> Visitor<'de> for CharacterVisitor {
    type Value = Character;

    fn expecting(&self, formatter: &mut fmt::Formatter) -> fmt::Result {
        write!(formatter, "a character in the legal UTF8 range")
    }

    fn visit_char<E: Error>(self, v: char) -> Result<Character, E> {
        Ok(Character::new(v))
    }

    fn visit_str<E: Error>(self, v: &str) -> Result<Character, E> {
        let mut iter = v.chars();
        match (iter.next(), iter.next()) {
            (Some(c), None) => self.visit_char(c),
            _ => Err(Error::invalid_value(Unexpected::Str(v), &self)),
        }
    }
}

/// A level or "kyuu" (級) of Japanese Kanji ranking.
///
/// There are 12 of these,
/// from 10 to 1, including two "pre" levels between 3 and 2, and 2 and 1.
///
/// Japanese students will typically have Level-5 ability by the time they
/// finish elementary school. Level-5 accounts for 1,026 characters. By the end
/// of middle school, they would have covered up to Level-3 (1,623 Kanji) in
/// their Japanese class curriculum.
///
/// While Level-2 (2,136 Kanji) is considered "standard adult" ability, many
/// adults would not pass the Level-2, or even the Level-Pre2 exam without
/// considerable study. It is not only the reading and writing of the characters
/// themselves that is tested, but also their associated vocabularly, usage in
/// real text, and appearance in classic Chinese idioms (四字熟語).
#[derive(Debug, PartialEq, Eq, PartialOrd, Ord, Hash, Copy, Clone)]
pub enum Level {
    Ten,
    Nine,
    Eight,
    Seven,
    Six,
    Five,
    Four,
    Three,
    PreTwo,
    Two,
    PreOne,
    One,
}

/// Kanji appear in the Unicode range 4e00 to 9ffc.
/// The final Japanese Kanji is 9fef (鿯).
///
/// For a chart of the full official range, see [this pdf] from the Unicode
/// organization.
///
/// A number of Level Pre-One Kanji appear in the [CJK Compatibility
/// Ideographs][compat] list, so there is an extra check here for those.
///
/// ```
/// assert!(kanji::is_kanji(&'澄'));  // Obviously a legal Kanji.
/// assert!(!kanji::is_kanji(&'a'));  // Obviously not.
/// ```
///
/// [compat]: https://www.unicode.org/charts/PDF/UF900.pdf
/// [this pdf]: https://www.unicode.org/charts/PDF/U4E00.pdf
pub fn is_kanji(c: &char) -> bool {
    (*c >= '\u{4e00}' && *c <= '\u{9ffc}') // Standard set.
        || (*c >= '\u{f900}' && *c <= '\u{faff}') // CJK Compatibility Ideographs.
}

/// Detect if a `char` is Kanji while accounting for all of the Unicode CJK
/// extensions.
///
/// [`is_kanji`](fn.is_kanji.html) should be enough for normal use.
pub fn is_kanji_extended(c: &char) -> bool {
    (*c >= '\u{4e00}' && *c <= '\u{9ffc}') // Standard set.
        || (*c >= '\u{f900}' && *c <= '\u{faff}') // CJK Compatibility Ideographs.
        || (*c >= '\u{3400}' && *c <= '\u{4dbf}') // Extension A
        || (*c >= '\u{20000}' && *c <= '\u{2a6dd}') // Extension B
        || (*c >= '\u{2a700}' && *c <= '\u{2b734}') // Extension C
        || (*c >= '\u{2b740}' && *c <= '\u{2b81d}') // Extension D
        || (*c >= '\u{2b820}' && *c <= '\u{2cea1}') // Extension E
        || (*c >= '\u{2ceb0}' && *c <= '\u{2ebe0}') // Extension F
        || (*c >= '\u{30000}' && *c <= '\u{3134a}') // Extension G
}

/// Is a given `char` betwen あ and ん?
///
/// ```
/// assert!(kanji::is_hiragana(&'あ'));
/// assert!(!kanji::is_hiragana(&'a'));
/// ```
pub fn is_hiragana(c: &char) -> bool {
    *c >= '\u{3041}' && *c <= '\u{309f}'
}

/// Is a given `char` between ア and ン?
///
/// ```
/// assert!(kanji::is_katakana(&'ン'));
/// assert!(!kanji::is_katakana(&'a'));
/// ```
pub fn is_katakana(c: &char) -> bool {
    *c >= '\u{30a0}' && *c <= '\u{30ff}'
}

/// Does a given `char` belong to the set of Japanese symbols and punctuation?
pub fn is_japanese_punct(c: &char) -> bool {
    *c >= '\u{3000}' && *c <= '\u{303f}'
}

/// Does a given `char` belong to the set of Japanese alphanumeric characters
/// and western punctuation?
pub fn is_alphanum(c: &char) -> bool {
    *c >= '\u{ff01}' && *c <= '\u{ff5e}'
}

/// All possible Kanji characters, as well as non-character radicals, in a
/// heap-allocated UTF-8 `String`.
///
/// ```
/// let ks = kanji::all_kanji();
///
/// assert_eq!(Some('一'), ks.chars().next());
/// assert_eq!(Some('\u{9ffc}'), ks.chars().last());
/// ```
pub fn all_kanji() -> String {
    let mut s = String::with_capacity(62967); // Capacity in bytes.
    (0x4e00..=0x9ffc)
        .filter_map(char::from_u32)
        .for_each(|c| s.push(c));
    s
}

/// Using the data stored in the `LEVEL_*` constants, generate a lookup table
/// for Kanji levels.
pub fn level_table() -> HashMap<Kanji, Level> {
    let pairs = vec![
        (exam_lists::LEVEL_10, Level::Ten),
        (exam_lists::LEVEL_09, Level::Nine),
        (exam_lists::LEVEL_08, Level::Eight),
        (exam_lists::LEVEL_07, Level::Seven),
        (exam_lists::LEVEL_06, Level::Six),
        (exam_lists::LEVEL_05, Level::Five),
        (exam_lists::LEVEL_04, Level::Four),
        (exam_lists::LEVEL_03, Level::Three),
        (exam_lists::LEVEL_02_PRE, Level::PreTwo),
        (exam_lists::LEVEL_02, Level::Two),
        (exam_lists::LEVEL_01, Level::One),
        // PreOne is added afterward to account for the 396 characters that
        // appear in both level One and PreOne.
        (exam_lists::LEVEL_01_PRE, Level::PreOne),
    ];
    let mut hm = HashMap::new();

    pairs.iter().for_each(|(c, l)| {
        c.chars().filter_map(Kanji::new).for_each(|k| {
            hm.insert(k, *l);
        });
    });

    hm
}

/// Determine how many Kanji of each exam level appear in some text,
/// given a lookup table.
///
/// The lookup table can be created via [`level_table`](fn.level_table.html).
pub fn kanji_counts(s: &str, levels: &HashMap<Kanji, Level>) -> HashMap<Level, u32> {
    let mut counts: HashMap<Level, u32> = HashMap::new();

    s.chars()
        .filter_map(Kanji::new)
        .filter_map(|k| levels.get(&k))
        .for_each(|&l| {
            let counter = counts.entry(l).or_insert(0);
            *counter += 1;
        });

    counts
}

#[cfg(test)]
mod tests {
    use super::*;

    #[test]
    fn unicode_ranges() {
        let ks = all_kanji();

        assert_eq!(20989, ks.chars().count());
        assert_eq!(62967, ks.len()); // Bytes.
    }

    #[test]
    fn all_kanjiable() {
        assert!(exam_lists::LEVEL_10.chars().all(|c| is_kanji(&c)));
        assert!(exam_lists::LEVEL_09.chars().all(|c| is_kanji(&c)));
        assert!(exam_lists::LEVEL_08.chars().all(|c| is_kanji(&c)));
        assert!(exam_lists::LEVEL_07.chars().all(|c| is_kanji(&c)));
        assert!(exam_lists::LEVEL_06.chars().all(|c| is_kanji(&c)));
        assert!(exam_lists::LEVEL_05.chars().all(|c| is_kanji(&c)));
        assert!(exam_lists::LEVEL_04.chars().all(|c| is_kanji(&c)));
        assert!(exam_lists::LEVEL_03.chars().all(|c| is_kanji(&c)));
        assert!(exam_lists::LEVEL_02_PRE.chars().all(|c| is_kanji(&c)));
        assert!(exam_lists::LEVEL_02.chars().all(|c| is_kanji(&c)));
        assert!(exam_lists::LEVEL_01_PRE.chars().all(|c| is_kanji(&c)));
        assert!(exam_lists::LEVEL_01.chars().all(|c| is_kanji(&c)));
    }

    #[test]
    fn sane_overwrite() {
        let k = Kanji::new('氣').unwrap();
        let m = level_table();
        assert_eq!(Some(&Level::PreOne), m.get(&k))
    }

    #[test]
    fn lookup_map_length() {
        let m = level_table();
        assert_eq!(5906, m.len());
    }
}