kaktus/lib.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249
//! Immutable __cactus stack__ implementation.
//!
//! Other terms for cactus stack include __parent pointer tree__,
//! __spaghetti stack__, and __saguaro stack__. See
//! [Wikipedia](https://en.wikipedia.org/wiki/Parent_pointer_tree) for more
//! information.
//!
//! ```ignore
//! // Quickstart
//! extern crate kaktus;
//! // the trait `Stack` needs to be importet for `Stack`/`VStack` to work
//! use kaktus::{Stack, Stack};
//!
//! let root = Stack::root(0);
//! let one = root.push(1);
//! assert_eq!(*one.pop().unwrap(), 0);
//! assert_eq!(*one, 1);
//! ```
//!
//! # Overview
//!
//! The stacks described in this crate differ from traditional stacks in one
//! decisive point, they are *immutable*. This means that a value in itself
//! represents the stack:
//!
//! ```ignore
//! let root = Stack::root(0);
//! let one = root.push(1);
//! let two = root.push(2);
//! assert_eq!(*two, 2);
//! ```
//! Further, popping a value from the stack just returns the parent -- the
//! originial value (and thus the stack it represents) remains valid:
//!
//! ```ignore
//! let one_ = two.pop().unwrap();
//! assert_eq!(*one_, 1);
//! // `two` is still valid
//! assert_eq!(*two, 2);
//! ```
//!
//! For comparison, this shows how stacks are often implemented instead:
//!
//! ```ignore
//! // traditional stack
//! let mut stack = vec![0];
//! stack.push(1);
//! stack.push(2);
//! let two = stack.pop().unwrap();
//! let one = stack.pop().unwrap();
//! ```
//!
//! ## Cactus stacks
//!
//! Due to the immutable property, it is possible to spawn off multiple values
//! from the same parent, making it effecively a tree:
//!
//! ```ignore
//! // tree structure:
//! // 0 -- 1 -- 2
//! // \
//! // 3 -- 4 -- 5
//!
//! let root = Stack::root(0);
//! let two = root.push(1).push(2);
//! let five = root.push(3).push(4).push(5);
//!
//! assert_eq!(*two, 2);
//! assert_eq!(*five, 5);
//! ```
//! Crate Content
//!
//! This crate provides two stack implementations:
//! [`Stack`](struct.Stack.html) and [`VStack`](struct.VStack.html). In short:
//! `Stack` uses a recursive (pointer) architecture, whilst `VStackc` uses a
//! vector to store the stack's data.
//!
use std::ops::Deref;
use std::rc::Rc;
use std::fmt::{self, Debug};
use std::iter::{IntoIterator, Iterator};
pub trait PushPop<T>
where Self: std::marker::Sized
{
type This;
fn push(&self, val: T) -> Self::This;
fn pop(&self) -> Option<Self::This>;
fn peek(&self) -> Option<&T>;
fn walk(&self) -> StackIterator<T>;
fn depth(&self) -> usize {
self.walk().count()
}
}
struct Cell<T>
where T: Sized
{
value: T,
parent: Option<Rc<Cell<T>>>,
}
impl<T> Cell<T> {
fn orphan(val: T) -> Rc<Self> {
Cell {
value: val,
parent: None,
}
.into()
}
fn with_parent(val: T, parent: Rc<Cell<T>>) -> Rc<Self> {
Cell {
value: val,
parent: Some(parent),
}
.into()
}
}
// newype for Rc<Cell<T>>
pub struct Stack<T> {
cell: Rc<Cell<T>>,
}
impl<T> Stack<T> {
/// Empty stacks are represented by `Option<Stack<T>>::None`
pub fn empty() -> Option<Self> {
None
}
pub fn root(val: T) -> Self {
// root cell does not have a parent
Stack::wrap(Cell::orphan(val))
}
// basic constructor
fn wrap(cell: Rc<Cell<T>>) -> Self {
Stack { cell: cell }
}
}
impl<T> PushPop<T> for Stack<T> {
type This = Stack<T>;
fn push(&self, val: T) -> Self {
Stack { cell: Cell::with_parent(val, self.cell.clone()) }
}
fn pop(&self) -> Option<Self> {
self.cell.parent.as_ref().cloned().map(Stack::wrap)
}
fn peek(&self) -> Option<&T> {
Some(self.deref())
}
fn walk(&self) -> StackIterator<T> {
self.into_iter()
}
}
impl<T> PushPop<T> for Option<Stack<T>> {
type This = Stack<T>;
fn push(&self, val: T) -> Self::This {
match *self {
None => Stack::root(val),
Some(ref stack) => stack.push(val),
}
}
fn pop(&self) -> Self {
self.as_ref().and_then(Stack::pop)
}
fn peek(&self) -> Option<&T> {
self.as_ref().and_then(Stack::peek)
}
fn walk(&self) -> StackIterator<T> {
StackIterator { current: self.as_ref().map(|stack| stack.clone()) }
}
}
//
impl<T> Clone for Stack<T> {
fn clone(&self) -> Stack<T> {
Stack::wrap(self.cell.clone())
}
}
impl<T> Deref for Stack<T> {
type Target = T;
fn deref(&self) -> &T {
&self.cell.deref().value
}
}
impl<T: Debug> Debug for Stack<T> {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
write!(f, "S<{:?}>", **self)
}
}
impl<'a, T> IntoIterator for &'a Stack<T> {
type Item = Stack<T>;
type IntoIter = StackIterator<T>;
fn into_iter(self) -> StackIterator<T> {
StackIterator { current: Some(self.clone()) }
}
}
pub struct StackIterator<T> {
current: Option<Stack<T>>,
}
impl<T> Iterator for StackIterator<T> {
type Item = Stack<T>;
fn next(&mut self) -> Option<Stack<T>> {
let cur = self.current.take();
self.current = cur.as_ref().and_then(Stack::pop);
cur
}
}
impl<T> Stack<T> where T: Default {
pub fn root_default() -> Self {
Stack::root(T::default())
}
pub fn push_default(&self) -> Self {
self.push(T::default())
}
}