1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
#![deny(missing_docs)]

/*!
# Description

This library contains my personal Rust prelude and utilities.

# Design goals

* Remove the hassle of having to add `use` statements for very common standard library types
* Reduce the amount of code that actually has to be written
* Alleviate common Rust pain points

This library is meant to improve your experience writing Rust no matter what you are writing code for. The patterns it tackles are mostly ones that the average Rust programmer encounters on a daily basis.

# Utilities

I have made some very simple utilities to aid in writing Rust code:

### Modules
* [`thread`](thread/index.html) Adds custom thread type as well as reexporting `std::thread::*` for convenience.

### Functions
* [`order`](order/index.html) Functions for fully ordering `PartialOrd` types
* [`close`](close/index.html) Functions for checking if two floating-point numbers are close enough to be considered equal
* [`promote_then`](fn.promote_then.html) Temporarily gain access to an immutable reference as mutable

### Traits
* [`BoolMap`](trait.BoolMap.html) Maps `bool`s to `Option`s in one line
* [`Bind`](trait.Bind.html) Allows the binding and mutation of a value in a single line
* [`KaiIterator`](trait.KaiIterator.html) Generates my custom iterator adapters

### Structs
* [`Adapter`](struct.Adapter.html) Wraps a reference to a string representation of some type
* [`Swap`](struct.Swap.html) Wrapper that allows consuming transformations on borrowed data

### Types
* [`DynResult`](type.DynResult.html) A dynamic `Result` type
* [`IoResult`](type.IoResult.html) An alias for `io::Result`
* [`FmtResult`](type.FmtResult.html) An alias for `fmt::Result`

### Macros
* [`variant!`](macro.variant.html) Maps an enum to an option for use with `Iterator::filter_map`
* [`transparent_mod!`](macro.transparent_mod.html) Declares transparent external child modules
* [`cond_vec!`](macro.cond_vec.html) Conditionally construct `Vec`s
*/

/**
Declares transparent external child modules

# Example
```ignore
use kai::*;

transparent_mod!(foo, bar, baz);

// Expands to

mod foo;
pub use foo::*;
mod bar;
pub use bar::*;
mod baz;
pub use baz::*;
```
*/
#[macro_export]
macro_rules! transparent_mod {
    ($($mod:ident),*) => {
        $(
            mod $mod;
            pub use $mod::*;
        )*
    };
    ($($mod:ident,)*) => {
        transparent_mod!($($mod),*);
    }
}

transparent_mod!(adapter, swap);
pub mod thread;

pub use std::{
    cmp::Ordering,
    collections::{HashMap, HashSet},
    error::Error,
    f32::consts::PI as PI32,
    f64::consts::PI as PI64,
    fmt::{Debug, Display, Formatter},
    fs::{self, File},
    io::{stdin, BufRead, Read, Write},
    iter,
    ops::{self, Deref, DerefMut, Index, IndexMut},
    path::{Path, PathBuf},
    rc::Rc,
    str::FromStr,
    sync::{Arc, Mutex},
    time::Duration,
    vec::IntoIter,
};

/**
Maps an enum to an option for use with `Iterator::filter_map`

# Syntax
```ignore
variant!( pattern = input => output )
```

# Example
```
use kai::*;

enum Foo {
    Bar(bool),
    Baz(i32),
}

let bar = Foo::Bar(true);
let baz = Foo::Baz(5);

assert_eq!(None,    variant!(Foo::Baz(i) = bar => i));
assert_eq!(Some(5), variant!(Foo::Baz(i) = baz => i));

let foos = vec![
    Foo::Baz(5),
    Foo::Bar(false),
    Foo::Baz(2),
];

// Turns this
let ints: Vec<i32> = foos
    .iter()
    .filter_map(|foo| if let Foo::Baz(i) = foo {
        Some(i)
    } else {
        None
    })
    .cloned()
    .collect();

// Into this
let ints: Vec<i32> = foos
    .iter()
    .filter_map(|foo| variant!(Foo::Baz(i) = foo => i))
    .cloned()
    .collect();

assert_eq!(vec![5, 2], ints);
```
*/
#[macro_export]
macro_rules! variant {
    ($pattern:pat = $input:expr => $output:expr) => {
        if let $pattern = $input {
            Some($output)
        } else {
            None
        }
    };
}

/**
Maps `bool`s to `Option`s in one line

# Example
```
use kai::*;

let condition = true;

// Turn this:
let s = if condition {
    Some(String::new())
} else {
    None
};

// Into this:
let s = condition.map_with(String::new);

assert_eq!(Some(String::new()), s);
```
*/
pub trait BoolMap {
    /// Map to an optional value
    fn map<T>(self, value: T) -> Option<T>;
    /// Map to an optional value using a function
    fn map_with<T, F>(self, f: F) -> Option<T>
    where
        F: FnMut() -> T;
}

impl<B> BoolMap for B
where
    B: Into<bool>,
{
    fn map<T>(self, value: T) -> Option<T> {
        if self.into() {
            Some(value)
        } else {
            None
        }
    }
    fn map_with<T, F>(self, mut f: F) -> Option<T>
    where
        F: FnMut() -> T,
    {
        if self.into() {
            Some(f())
        } else {
            None
        }
    }
}

/**
Allows the binding and mutation of a value in a single line

This is useful when you want a functional interface wrapping a mutable one,
or when you really feel like doing something in one line.

# `bind_mut` example
```
use kai::*;

// Turn this
let mut a = vec![1, 4, 2, 1, 3, 2, 2];
a.sort();
a.dedup();

// Into this
let b = vec![1, 4, 2, 1, 3, 2, 2].bind_mut(|v| v.sort()).bind_mut(Vec::dedup);

assert_eq!(a, b);
```

# `bind_map` example
```
use kai::*;

// Turn this
let x = 2i32.pow(3);
let a = x / 3;

// Into this
let b = 2i32.pow(3).bind_map(|x| x / 3);

assert_eq!(a, b);
```
*/
pub trait Bind: Sized {
    /// Binds the value, mutates it, and returns it
    fn bind_mut<F>(mut self, mut f: F) -> Self
    where
        F: FnMut(&mut Self),
    {
        f(&mut self);
        self
    }
    /// Binds the value, maps it with the function, and returns the mapped value
    fn bind_map<F, R>(self, mut f: F) -> R
    where
        F: FnMut(Self) -> R,
    {
        f(self)
    }
}

impl<T> Bind for T {}

/**
An iterator adaptor created by [`KaiIterator::chain_if`](trait.KaiIterator.html#method.chain_if)
*/
pub enum ChainIf<I, J>
where
    I: IntoIterator,
    J: IntoIterator<Item = I::Item>,
{
    /// The iterator was chained
    Chained(I::IntoIter, J::IntoIter),
    /// The iterator was not chained
    NotChained(I::IntoIter),
}

impl<I, J> Iterator for ChainIf<I, J>
where
    I: IntoIterator,
    J: IntoIterator<Item = I::Item>,
{
    type Item = I::Item;
    fn next(&mut self) -> Option<Self::Item> {
        use ChainIf::*;
        match self {
            Chained(first, second) => first.next().or_else(|| second.next()),
            NotChained(iter) => iter.next(),
        }
    }
}

/**
An iterator adaptor created by [`KaiIterator::chain_if_else`](trait.KaiIterator.html#method.chain_if_else)
*/
pub enum ChainIfElse<I, J, K>
where
    I: IntoIterator,
    J: IntoIterator<Item = I::Item>,
    K: IntoIterator<Item = I::Item>,
{
    /// The iterator was chained with the first iterator
    If(I::IntoIter, J::IntoIter),
    /// The iterator was chained with the second iterator
    Else(I::IntoIter, K::IntoIter),
}

impl<I, J, K> Iterator for ChainIfElse<I, J, K>
where
    I: IntoIterator,
    J: IntoIterator<Item = I::Item>,
    K: IntoIterator<Item = I::Item>,
{
    type Item = I::Item;
    fn next(&mut self) -> Option<Self::Item> {
        use ChainIfElse::*;
        match self {
            If(first, second) => first.next().or_else(|| second.next()),
            Else(first, second) => first.next().or_else(|| second.next()),
        }
    }
}

/**
Generates my custom iterator adapters

For convenience, this is implmented for all types that
implement not just [`Iterator`](https://doc.rust-lang.org/std/iter/trait.Iterator.html),
but [`IntoIterator`](https://doc.rust-lang.org/std/iter/trait.IntoIterator.html) as well.

See methods for usage.
*/
pub trait KaiIterator: IntoIterator + Sized {
    /**
    Chain this iterator with another if the condition is true

    # Example
    ```
    use kai::*;

    let condition = true;

    // Turn this
    let mut v = vec![1, 2, 3];
    if condition {
        v.extend(vec![4, 5, 6])
    }

    // Into this
    let w: Vec<_> = vec![1, 2, 3].chain_if(condition, || vec![4, 5, 6]).collect();

    assert_eq!(v, w);
    ```
    */
    fn chain_if<I, F>(self, condition: bool, f: F) -> ChainIf<Self, I>
    where
        I: IntoIterator<Item = Self::Item>,
        F: FnOnce() -> I,
    {
        if condition {
            ChainIf::Chained(self.into_iter(), f().into_iter())
        } else {
            ChainIf::NotChained(self.into_iter())
        }
    }
    /**
    Chain this iterator with one of two options based on the condition

    If the condition is true, the iterator generated by `f` is used.
    If the condition is false, the iterator generated by `g` is used.

    # Example
    ```
    use kai::*;

    let v = vec![1, 2, 3];
    let len = v.len();
    let w: Vec<_> = v.into_iter().chain_if_else(
        len == 3,
        || vec![4, 5],
        || Some(6)
    ).collect();

    assert_eq!(
        w,
        vec![1, 2, 3, 4, 5],
    );
    ```
    */
    fn chain_if_else<J, K, F, G>(self, condition: bool, f: F, g: G) -> ChainIfElse<Self, J, K>
    where
        J: IntoIterator<Item = Self::Item>,
        K: IntoIterator<Item = Self::Item>,
        F: FnOnce() -> J,
        G: FnOnce() -> K,
    {
        if condition {
            ChainIfElse::If(self.into_iter(), f().into_iter())
        } else {
            ChainIfElse::Else(self.into_iter(), g().into_iter())
        }
    }
}

impl<I> KaiIterator for I where I: IntoIterator + Sized {}

/**
An dynamic `Result` type
*/
pub type DynResult<T> = Result<T, Box<dyn Error>>;

/**
An alias for `io::Result`
*/
pub type IoResult<T> = std::io::Result<T>;

/**
An alias for `fmt::Result`
*/
pub type FmtResult = std::fmt::Result;

/**
Functions for fully ordering `PartialOrd` types

These functions are intended for use with certain standard library
functions that take a `Fn(&T, &T) -> Ordering` to order items, such as
`Iterator::max_by`, `Iterator::min_by`, and `Vec::sort_by`.

# Example
```
use kai::*;

let mut v: Vec<f32> = vec![1.0, 0.1, -4.1, 5.2];

v.sort_by(order::or_less);
let max = *v.iter().max_by(order::or_greater).unwrap();

assert_eq!(
    vec![-4.1, 0.1, 1.0, 5.2],
    v
);
assert_eq!(5.2, max);
```
*/
pub mod order {
    use std::cmp::Ordering;
    /// Order and use `Ordering::Less` as a default
    pub fn or_less<T>(a: &T, b: &T) -> Ordering
    where
        T: PartialOrd,
    {
        a.partial_cmp(&b).unwrap_or(Ordering::Less)
    }
    /// Order and use `Ordering::Greater` as a default
    pub fn or_greater<T>(a: &T, b: &T) -> Ordering
    where
        T: PartialOrd,
    {
        a.partial_cmp(&b).unwrap_or(Ordering::Greater)
    }
    /// Order and use `Ordering::Equal` as a default
    pub fn or_equal<T>(a: &T, b: &T) -> Ordering
    where
        T: PartialOrd,
    {
        a.partial_cmp(&b).unwrap_or(Ordering::Equal)
    }
}

/**
Functions for checking if two floating-point numbers are close enough to be considered equal

These functions use the `std::f**::EPSILON` constants to check if two numbers are close
enough for their difference to be the result of rounding errors. I made these primarily to
get clippy off my back about directly comparing floats.
*/
pub mod close {
    #![allow(clippy::trivially_copy_pass_by_ref)]
    /// Check if two `f32`s are close enough to be considered equal
    pub fn f32(a: f32, b: f32) -> bool {
        (a - b).abs() < std::f32::EPSILON
    }
    /// Check if two `&f32`s are close enough to be considered equal
    pub fn f32_ref(a: &f32, b: &f32) -> bool {
        (*a - *b).abs() < std::f32::EPSILON
    }
    /// Check if two `f64`s are close enough to be considered equal
    pub fn f64(a: f64, b: f64) -> bool {
        (a - b).abs() < std::f64::EPSILON
    }
    /// Check if two `&f64`s are close enough to be considered equal
    pub fn f64_ref(a: &f64, b: &f64) -> bool {
        (*a - *b).abs() < std::f64::EPSILON
    }
}

/**
Temporarily gain access to an immutable reference as mutable

This function attempts to make promoting a reference to be mutable slightly less unsafe.
It does this by wrapping access to the mutable reference in a closure, thus bounding
the lifetime. This allows the compiler to reject certain unsafe behaviors and misuse
of the mutable reference. That being said, there are probably still a ton of things
that could go wrong, so this function is still marked `unsafe`. If you are someone who
knows the specific ways that using this function could still cause undefined behvaior,
please let me know by emailing me or opening an issue.

# Example
```
use kai::*;

let v = vec![5];
let x = unsafe { promote_then(&v, |v| v.remove(0)) };
assert!(v.is_empty());
assert_eq!(5, x);
```
*/
pub unsafe fn promote_then<T, R, F>(var: &T, f: F) -> R
where
    F: FnOnce(&mut T) -> R,
{
    f((var as *const T as *mut T).as_mut().unwrap())
}

/**
Conditionally construct `Vec`s

# Syntax
```ignore
cond_vec![ condition => element, condition => element, ... ]
```

# Example
```
use kai::*;

let mary_is_invited = true;
let dan_is_invited = false;

let guest_list = cond_vec![
    true => "Tom",
    true => "Steven",
    mary_is_invited => "Mary",
    dan_is_invited => "Dan",
];

assert_eq!(
    guest_list,
    vec!["Tom", "Steven", "Mary"]
);
```
*/
#[macro_export]
macro_rules! cond_vec {
    ($($cond:expr => $elem:expr),* $(,)*) => {{
        let mut new_vec = Vec::new();
        $(if $cond {
            new_vec.push($elem);
        })*
        new_vec
    }};
}