1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
/*
   Copyright 2017 Takashi Ogura

   Licensed under the Apache License, Version 2.0 (the "License");
   you may not use this file except in compliance with the License.
   You may obtain a copy of the License at

       http://www.apache.org/licenses/LICENSE-2.0

   Unless required by applicable law or agreed to in writing, software
   distributed under the License is distributed on an "AS IS" BASIS,
   WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
   See the License for the specific language governing permissions and
   limitations under the License.
 */
//! # Kinematics(forward/inverse) library using [nalgebra](http://nalgebra.org).
//!
//! `k` has below functionalities
//!
//! 1. Forward kinematics
//! 1. Inverse kinematics
//! 1. URDF Loader
//!
//! ## Forward Kinematics
//!
//! If you deal robot arm without any branches, you can use `VecKinematicChain`,
//! which is just a Vec of `Link`. If you need to deal more complexed
//! link structure, you have two choices now.
//!
//! `k` has two representation for kinematic chain.
//!
//! 1. `LinkTree`
//! 1. `LinkStar`
//!
//! ### `LinkTree`
//!
//! `LinkTree` uses `Rc<RefCell<Node<T>>>` to handle tree structure.
//! It can deal complete tree sctuctures, but has lost the safety of rust,
//! and it has runtime costs.
//!
//! ### `LinkStar`
//!
//! `LinkStar` has very simple structure, Vec of Vec of Link.
//! This is thread safe and fast, but it is not a tree, it has star structure.
//! It means that it can deal humanoid with four limbs without fingers,
//! but it cannot have branches in the limbs like fingers. Only root has branches.
//!
//!
//! # Examples
//!
//! Build `VecKinematicChain` using `LinkBuilder` at first.
//! Instead of using the builder, You can use `URDF` format
//! by `urdf` module if you want.
//!
//! ```
//! extern crate k;
//! extern crate nalgebra;
//!
//! use k::{VecKinematicChain, LinkBuilder, JointType,
//!        JointContainer,KinematicChain, JacobianIKSolverBuilder,
//!        InverseKinematicsSolver};
//! use nalgebra::{Vector3, Translation3};
//!
//! fn main() {
//!   let l0 = LinkBuilder::new()
//!       .name("shoulder_link1")
//!       .joint("shoulder_pitch",
//!              JointType::Rotational { axis: Vector3::y_axis() }, None)
//!       .finalize();
//!   let l1 = LinkBuilder::new()
//!       .name("shoulder_link2")
//!       .joint("shoulder_roll",
//!              JointType::Rotational { axis: Vector3::x_axis() }, None)
//!       .translation(Translation3::new(0.0, 0.1, 0.0))
//!       .finalize();
//!   let l2 = LinkBuilder::new()
//!       .name("shoulder_link3")
//!       .joint("shoulder_yaw",
//!              JointType::Rotational { axis: Vector3::z_axis() }, None)
//!       .translation(Translation3::new(0.0, 0.0, -0.30))
//!       .finalize();
//!   let l3 = LinkBuilder::new()
//!       .name("elbow_link1")
//!       .joint("elbow_pitch",
//!              JointType::Rotational { axis: Vector3::y_axis() }, None)
//!       .translation(Translation3::new(0.0, 0.0, -0.15))
//!       .finalize();
//!   let l4 = LinkBuilder::new()
//!       .name("wrist_link1")
//!       .joint("wrist_yaw",
//!              JointType::Rotational { axis: Vector3::z_axis() }, None)
//!       .translation(Translation3::new(0.0, 0.0, -0.15))
//!       .finalize();
//!   let l5 = LinkBuilder::new()
//!       .name("wrist_link2")
//!       .joint("wrist_pitch",
//!              JointType::Rotational { axis: Vector3::y_axis() }, None)
//!       .translation(Translation3::new(0.0, 0.0, -0.15))
//!       .finalize();
//!   let l6 = LinkBuilder::new()
//!       .name("wrist_link3")
//!       .joint("wrist_roll",
//!              JointType::Rotational { axis: Vector3::x_axis() }, None)
//!       .translation(Translation3::new(0.0, 0.0, -0.10))
//!       .finalize();
//!   let mut arm = VecKinematicChain::new("arm", vec![l0, l1, l2, l3, l4, l5, l6]);
//!
//!   // set joint angles
//!   let angles = vec![0.8, 0.2, 0.0, -1.5, 0.0, -0.3, 0.0];
//!   arm.set_joint_angles(&angles).unwrap();
//!   // get the transform of the end of the manipulator (forward kinematics)
//!   let mut target = arm.calc_end_transform();
//!   target.translation.vector[2] += 0.1;
//!   let solver = JacobianIKSolverBuilder::new().finalize();
//!   // solve and move the manipulator angles
//!   solver.solve(&mut arm, &target)
//!         .unwrap_or_else(|err| {
//!                               println!("Err: {}", err);
//!                               0.0f32
//!                               });
//!   println!("angles={:?}", arm.get_joint_angles());
//! }
//! ```
//!
//! or you can use urdf module to load URDF file.
//!
//! ```
//! let _ = k::urdf::create_tree_from_file::<f32, _>("urdf/sample.urdf").unwrap();
//! ```
#[macro_use]
extern crate log;
extern crate nalgebra as na;

mod errors;
mod traits;
mod links;
mod ik;
mod joints;
mod rctree;
mod rctree_links;
mod vec_links;

pub mod math;
pub mod urdf;

pub use self::joints::*;
pub use self::errors::*;
pub use self::traits::*;
pub use self::links::*;
pub use self::ik::*;
pub use self::rctree_links::*;
pub use self::vec_links::*;