1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
use crate::error::{CompilerError, CompilerResult};
use crate::jshelper::{JSSourceCode, JSAst};
use crate::bytecode::{Bytecode, BytecodeResult};
use crate::scope::*;
use crate::bytecode::{*};
use crate::instruction_set::{InstructionSet, CommonLiteral, ReservedeRegister};

use resast::prelude::*;
use std::borrow::Borrow;
use std::collections::{HashMap};


#[derive(Debug, Clone)]
struct BytecodeFunction
{
    ident: String,
    // During the compilation of a function block, "bytecode" is not known yet (obviously).
    // But an instance of this struct is anyway inserted into the function list,
    // to allow functions using callbacks to themselves.
    bytecode: Option<Bytecode>,
    arguments: Vec<Register>,
    // Same explanation as above for 'bytecode'
    used_decls: Option<Vec<Register>>,
}

impl BytecodeFunction {
    pub fn new_phantom(ident: Identifier, arg_regs: Vec<Register>) -> Self {
        BytecodeFunction {
            ident: ident,
            bytecode: None,
            arguments: arg_regs,
            used_decls: None,
        }
    }

    pub fn from_phantom(phantom: Self, bytecode: Bytecode, used_decls: Vec<Register>) -> Self {
        BytecodeFunction {
            ident: phantom.ident,
            bytecode: Some(bytecode),
            arguments: phantom.arguments,
            used_decls: Some(used_decls),
        }
    }
}


#[derive(Clone)]
struct LabelGenerator
{
    counter: u32
}

impl LabelGenerator {
    pub fn new() -> Self {
        LabelGenerator {
            counter: 0
        }
    }

    pub fn generate_label(&mut self) -> Label {
        let counter = self.counter;
        self.counter += 1;
        counter
    }
}

/// Represents a set of declaration dependencies
///
/// In JavaScript there a severeal dependencies like ``document``, ``window`` or ``setInterval``.
/// The usage these of as well as their expected register postion is tracked in this object.
#[derive(Clone, Debug)]
pub struct DeclDepencies {
    pub decls_decps: HashMap<Identifier, Register>
}

impl DeclDepencies {
    pub fn new() -> Self {
        DeclDepencies {
            decls_decps: HashMap::new()
        }
    }

    pub fn add_decl_dep(&mut self, ident: Identifier, reg: Register) {
        self.decls_decps.insert(ident.to_string(), reg);
    }

    pub fn try_get_dep(&self, ident: &Identifier) -> Option<&Register> {
        self.decls_decps.get(ident)
    }
}

/// Compiles JavaScript source code into bytecode.
///
/// ```
/// use jsyc_compiler::{JSSourceCode, BytecodeCompiler};
///
/// let js_code = JSSourceCode::new("console.log('Hello World');".into());
/// let mut compiler = BytecodeCompiler::new();
///
/// let bytecode = compiler.compile(&js_code).expect("Failed to compile code");
/// println!("bytecode: {}", bytecode);
/// ```
#[derive(Clone)]
pub struct BytecodeCompiler {
    scopes: Scopes,
    // This is not a hashmap but a vector only to make tetsing easier
    functions: Vec<BytecodeFunction>,
    isa: InstructionSet,
    label_generator: LabelGenerator,
    decl_dependencies: DeclDepencies
}

impl BytecodeCompiler {

    /// Creates a new bytecode compiler
    pub fn new() -> Self {
        let mut scopes = Scopes::new();
        let isa = InstructionSet::default(scopes.current_scope_mut().unwrap());
        isa.common_lits().add_to_lit_cache(&mut scopes).unwrap();

        BytecodeCompiler{
            scopes: scopes,
            functions: vec![],
            isa: isa,
            label_generator: LabelGenerator::new(),
            decl_dependencies: DeclDepencies::new()
        }
    }

    /// Add a variable decleration to the compiler
    ///
    /// By adding a variable declaration, you can inform the compiler about the existence of
    /// an external declaration. However, this is not necessary since dependencies are tracked
    /// and can be retrieved after the compilation through [decl_dependencies](struct.BytecodeCompiler.html#method.decl_dependencies).
    pub fn add_var_decl(&mut self, decl: String) ->  CompilerResult<Reg> {
        self.scopes.add_decl(decl, DeclarationType::Variable(MyVariableKind::Var))
    }

    /// Returns all dependencies on external declarations
    ///
    /// Usually JavaScript depends on several function and variable declarations from outside
    /// of the current script: such as `window`, `document` or `setInterval`.
    /// # Returns
    /// A list of these dependencies and in which register they are expected to be.
    /// This result will be available after BytecodeCompiler::compile ran.
    pub fn decl_dependencies(&self) -> &DeclDepencies{
        &self.decl_dependencies
    }

    /// Compiles the provided JavaScript code into bytecode.
    ///
    /// ```
    /// use jsyc_compiler::{JSSourceCode, BytecodeCompiler};
    ///
    /// let js_code = JSSourceCode::new("console.log('Hello World');".into());
    /// let mut compiler = BytecodeCompiler::new();
    ///
    /// let bytecode = compiler.compile(&js_code).expect("Failed to compile code");
    /// println!("bytecode: {}", bytecode);
    /// ```
    pub fn compile(&mut self, source: &JSSourceCode) -> BytecodeResult {
        let ast = JSAst::parse(source)?;
        let mut bytecode = match ast.ast {
            resast::Program::Mod(_) => Err(CompilerError::are_unsupported("ES6 modules")),
            resast::Program::Script(s) => {
                s.iter().map(|part| {
                    self.compile_program_part(part)
                }).collect::<Result<Bytecode, CompilerError>>()
            },
        }?;

        bytecode = self.finalize_label_addresses(bytecode, 0)?;

        if self.functions.is_empty() {
            Ok(bytecode)
        } else {
            self.finalize_function_bytescodes(bytecode.add(Operation::new(Instruction::Exit, vec![])))
        }
    }

    fn compile_program_part(&mut self, progrm_part: &ProgramPart) -> BytecodeResult {
        match progrm_part {
            resast::ProgramPart::Dir(_) => Err(CompilerError::are_unsupported("Directives")),
            resast::ProgramPart::Decl(decl) => self.compile_decl(&decl),
            resast::ProgramPart::Stmt(stmt) => self.compile_stmt(&stmt)
        }
    }

    fn compile_decl(&mut self, decl: &Decl) -> BytecodeResult{
        match decl {
            Decl::Variable(var_kind, var_decls) => self.compile_var_decl(var_kind, var_decls),
            Decl::Function(func) => self.compile_func(func),
            Decl::Class(_) => Err(CompilerError::are_unsupported("Class declarations")),
            Decl::Import(_) => Err(CompilerError::are_unsupported("Import declarations")),
            Decl::Export(_) => Err(CompilerError::are_unsupported("Export declarations")),
        }
    }

    fn compile_var_decl(&mut self, kind: &VariableKind, decls: &[VariableDecl]) -> BytecodeResult {
        match kind {
            VariableKind::Let => { println!("Warning: 'let' will be treated as 'var'", ); }
            VariableKind::Const => { println!("Info: 'const' will be treated as 'var'"); }
            _ => {}
        }

        decls.iter().map(|decl| {
            match &decl.id {
                Pat::Identifier(ident) => {
                    let reg = self.scopes.add_decl(ident.to_string(), DeclarationType::Variable(MyVariableKind::from(kind)))?;
                    match &decl.init {
                        Some(expr) => Ok(self.maybe_compile_expr(expr, Some(reg))?.0),
                        None => Ok(Bytecode::new())
                    }
                }
                Pat::Array(_) => Err(CompilerError::are_unsupported("'Array Patterns'")),
                Pat::Object(_) => Err(CompilerError::are_unsupported("'Object Patterns'")),
                Pat::RestElement(_) => Err(CompilerError::are_unsupported("'Rest Elements'")),
                Pat::Assignment(_) => Err(CompilerError::are_unsupported("'Assignment Patterns'"))
            }
        }).collect()
    }

    fn compile_stmt(&mut self, stmt: &Stmt) -> BytecodeResult{
        match stmt {
            Stmt::Expr(expr) => self.compile_expr(&expr, self.isa.reserved_reg(&ReservedeRegister::TrashRegister)),
            Stmt::Block(stmts) => stmts.iter().map(|part| self.compile_program_part(part)).collect(),
            Stmt::Empty => Ok(Bytecode::new()),
            Stmt::Debugger => Err(CompilerError::are_unsupported("Debugger statments")),
            Stmt::With(_) => Err(CompilerError::are_unsupported("'with' statments")),
            Stmt::Return(ret) => self.compile_return_stmt(ret),
            Stmt::Labeled(_) => Err(CompilerError::are_unsupported("Label statments")),
            Stmt::Break(_) => Err(CompilerError::are_unsupported("'break' statments")),
            Stmt::Continue(_) => Err(CompilerError::are_unsupported("'continue' statments")),
            Stmt::If(if_stmt) => self.compile_if_stmt(if_stmt),
            Stmt::Switch(_) => Err(CompilerError::are_unsupported("'switch' statments")),
            Stmt::Throw(_) => Err(CompilerError::are_unsupported("'throw' statments")),
            Stmt::Try(_) => Err(CompilerError::are_unsupported("'try' statments")),
            Stmt::While(while_stmt) => self.compile_while_stmt(while_stmt),
            Stmt::DoWhile(dowhile_stmt) => self.compile_dowhile_stmt(dowhile_stmt),
            Stmt::For(for_stmt) => self.compile_for_stmt(for_stmt),
            Stmt::ForIn(_) => Err(CompilerError::are_unsupported("for-in statments")),
            Stmt::ForOf(_) => Err(CompilerError::are_unsupported("for-of statments")),
            Stmt::Var(decls) => self.compile_var_decl(&VariableKind::Var, &decls),
        }
    }

    fn compile_return_stmt(&mut self, ret: &Option<Expr>) -> BytecodeResult {
        let used_decl_regs: Vec<Reg> = self.scopes.current_scope()?.used_decls.iter()
                                            .map(|used_decl| used_decl.register).collect();

        let (bytecode, ret_reg) = match ret {
            Some(ret_expr) => {
                let (bytecode, ret_reg) = self.maybe_compile_expr(ret_expr, None)?;
                (bytecode, ret_reg)
            },
            None => (Bytecode::new(), self.isa.common_literal_reg(&CommonLiteral::Void0))
        };

        Ok(bytecode
            .add(Operation::new(Instruction::ReturnBytecodeFunc,
                                vec![Operand::Reg(ret_reg), Operand::RegistersArray(used_decl_regs)]))
        )
    }

    fn compile_if_stmt(&mut self, if_stmt: &IfStmt) -> BytecodeResult {
        let (test_bytecode, test_reg) = self.maybe_compile_expr(&if_stmt.test, None)?;

        let if_branch_bc = self.compile_stmt(if_stmt.consequent.borrow())?;

        let if_branch_end_label = self.label_generator.generate_label();
        let else_branch_end_label = self.label_generator.generate_label();

        let bytecode = test_bytecode
                .add(Operation::new(Instruction::JumpCondNeg, vec![Operand::Reg(test_reg), Operand::branch_addr(if_branch_end_label)]))
                .add_bytecode(if_branch_bc);

        if let Some(else_branch) = if_stmt.alternate.borrow() {
            let else_branch_bc = self.compile_stmt(&else_branch.borrow())?;
            //If-Else
            Ok(bytecode
                .add(Operation::new(Instruction::Jump, vec![Operand::branch_addr(else_branch_end_label)]))
                .add_label(if_branch_end_label)
                .add_bytecode(else_branch_bc)
                .add_label(else_branch_end_label)
            )
        } else {
            // If
            Ok(bytecode
                .add_label(if_branch_end_label))
        }
    }

    fn compile_while_stmt(&mut self, while_stmt: &WhileStmt) -> BytecodeResult {
        let (test_bc, test_reg) = self.maybe_compile_expr(&while_stmt.test, None)?;

        let while_cond_label = self.label_generator.generate_label();
        let while_end_label = self.label_generator.generate_label();

        Ok(test_bc
            .add_label(while_cond_label)
            .add(Operation::new(Instruction::JumpCondNeg, vec![Operand::Reg(test_reg), Operand::branch_addr(while_end_label)]))
            .add_bytecode(self.compile_stmt(while_stmt.body.borrow())?)
            .add(Operation::new(Instruction::Jump, vec![Operand::branch_addr(while_cond_label)]))
            .add_label(while_end_label))
    }

    fn compile_dowhile_stmt(&mut self, dowhile_stmt: &DoWhileStmt) -> BytecodeResult {
        let body_bc = self.compile_stmt(dowhile_stmt.body.borrow())?;
        let (test_bc, test_reg) = self.maybe_compile_expr(&dowhile_stmt.test, None)?;

        let dowhile_start_label = self.label_generator.generate_label();

        Ok(Bytecode::new()
            .add_label(dowhile_start_label)
            .add_bytecode(body_bc)
            .add_bytecode(test_bc)
            .add(Operation::new(Instruction::JumpCond, vec![Operand::Reg(test_reg), Operand::branch_addr(dowhile_start_label)])))
    }

    fn compile_for_stmt(&mut self, for_stmt: &ForStmt) -> BytecodeResult {
        let init_bc = match &for_stmt.init {
            Some(loop_init) => match loop_init {
                LoopInit::Variable(kind, decls) => self.compile_var_decl(&kind, &decls)?,
                LoopInit::Expr(expr) => self.maybe_compile_expr(&expr, None)?.0
            },
            None => Bytecode::new()
        };

        let loop_start_label = self.label_generator.generate_label();
        let loop_end_label = self.label_generator.generate_label();

        let test_bc = match &for_stmt.test {
            Some(test_expr) => {
                let (test_bc, test_reg) = self.maybe_compile_expr(&test_expr, None)?;

                test_bc
                    .add(Operation::new(Instruction::JumpCondNeg, vec![Operand::Reg(test_reg), Operand::branch_addr(loop_end_label)]))
            }
            None => Bytecode::new()
        };

        let update_bc = match &for_stmt.update {
            Some(update_expr) => self.maybe_compile_expr(&update_expr, None)?.0,
            None => Bytecode::new()
        };

        let body_bc = self.compile_stmt(&for_stmt.body)?;

        Ok(init_bc
            .add_label(loop_start_label)
            .add_bytecode(test_bc)
            .add_bytecode(body_bc)
            .add_bytecode(update_bc)
            .add(Operation::new(Instruction::Jump, vec![Operand::branch_addr(loop_start_label)]))
            .add_label(loop_end_label))
    }

    fn maybe_compile_expr(&mut self, expr: &Expr, target_reg: Option<Register>) -> CompilerResult<(Bytecode, Register)> {
        let opt_reg = match expr {
            Expr::Ident(ident) => match self.scopes.get_var(ident) {
                Ok(var) => Some(var.register),
                Err(_) => self.decl_dependencies.try_get_dep(ident).map(|&reg| reg)
            },
            Expr::Literal(lit) => {
                match self.scopes.get_lit_decl(&BytecodeLiteral::from_lit(lit.clone())?) {
                    Ok(lit_decl) => Some(lit_decl.register),
                    Err(_) => None
                }
            }
            // TODO: Check test_member_expr
            // Expr::Member(member) => match member.object.borrow() {
            //         Expr::Ident(obj_ident) => match member.property.borrow() {
            //                 Expr::Ident(prop_ident) => {
            //                     match self.scopes.get_var(&format!("{}.{}", obj_ident, prop_ident)) {
            //                         Ok(var) => (Some(Bytecode::new()), Some(var.register)),
            //                         Err(_) => (None, target_reg)
            //                     }
            //                 },
            //                 _ => (None, target_reg)
            //         },
            //         _ => (None, target_reg)
            // },
            _ => None
        };

        let (opt_bytecode, target_reg) = match opt_reg {
            Some(reg) => match target_reg {
                Some(tar_reg) => (Some(self.compile_operand_assignment(tar_reg, Operand::Reg(reg))?), tar_reg),
                None => (Some(Bytecode::new()), reg)
            },
            None => match target_reg {
                Some(tar_reg) => (None, tar_reg),
                None => (None, self.scopes.reserve_register()?)
            }
        };

        let bytecode = match opt_bytecode {
            Some(bc) => bc,
            None => self.compile_expr(expr, target_reg)?
        };

        Ok((bytecode, target_reg))
    }

    fn compile_expr(&mut self, expr: &Expr, target_reg: Reg) -> BytecodeResult {
        match expr {
            Expr::Array(array_exprs) => self.compile_array_expr(array_exprs, target_reg),
            Expr::ArrowFunction(_) => Err(CompilerError::are_unsupported("Arrow functions")),
            Expr::ArrowParamPlaceHolder(_,_) => Err(CompilerError::are_unsupported("Arrow parameter placeholder")),
            Expr::Assignment(assignment) => self.compile_assignment_expr(assignment, target_reg),
            Expr::Await(_) => Err(CompilerError::are_unsupported("'await' expressions")),
            Expr::Binary(bin) => self.compile_binary_expr(bin, target_reg),
            Expr::Class(_) => Err(CompilerError::are_unsupported("'class' expressions")),
            Expr::Call(call) => self.compile_call_expr(call, target_reg),
            Expr::Conditional(cond) => self.compile_conditional_expr(cond, target_reg),
            Expr::Function(_) => Err(CompilerError::are_unsupported("function expressions")),
            Expr::Ident(ident) => self.compile_identifier_expr(ident, target_reg),
            Expr::Literal(lit) => self.compile_literal_expr(lit, target_reg),
            Expr::Logical(logical) => self.compile_logical_expr(logical, target_reg),
            Expr::Member(member) => self.compile_member_expr_access(member, target_reg),
            Expr::MetaProperty(_) => Err(CompilerError::are_unsupported("meta properties")),
            Expr::New(_) => Err(CompilerError::are_unsupported("object related expressions (new, this, {})")),
            Expr::Object(_) => Err(CompilerError::are_unsupported("object related expressions (new, this, {})")),
            Expr::Sequence(_) => Err(CompilerError::are_unsupported("seqeunce expressions")),
            Expr::Spread(_) => Err(CompilerError::are_unsupported("spread expressions")),
            Expr::Super => Err(CompilerError::are_unsupported("'super' expressions")),
            Expr::TaggedTemplate(_) => Err(CompilerError::are_unsupported("tagged template expressions")),
            Expr::This => Err(CompilerError::are_unsupported("object related expressions (new, this, {})")),
            Expr::Update(update) => self.compile_update_expr(update, target_reg),
            Expr::Unary(unary) => self.compile_unary_expr(unary, target_reg),
            Expr::Yield(_) => Err(CompilerError::are_unsupported("'yield' expressions")),
        }
    }

    fn compile_array_expr(&mut self, array: &ArrayExpr, target_reg: Reg) -> BytecodeResult {
        let (bytecodes, regs): (Vec<Bytecode>, Vec<Reg>) = array.iter().map(|opt_expr| {
            match opt_expr {
                Some(expr) => self.maybe_compile_expr(expr, None),
                None => Err(CompilerError::are_unsupported("'null' array fields"))
            }
        }).collect::<CompilerResult<Vec<(Bytecode, Reg)>>>()?.into_iter().unzip();

        Ok(bytecodes.into_iter().collect::<Bytecode>()
            .add(Operation::new(Instruction::LoadArray, vec![Operand::Reg(target_reg), Operand::RegistersArray(regs)]))
        )
    }

    fn compile_assignment_expr(&mut self, assign: &AssignmentExpr, _target_reg: Reg) -> BytecodeResult {
        let ((left_bc, left_reg), maybe_prop_reg) = match &assign.left {
            AssignmentLeft::Pat(_) => { return Err(CompilerError::are_unsupported("Patterns in assignments")); },
            AssignmentLeft::Expr(expr) => match expr.borrow() {
                Expr::Member(member) => {
                    let (member_bc, obj_reg, prop_reg) = self.compile_member_expr(member)?;
                    ((member_bc, obj_reg), Some(prop_reg))
                },
                _ => (self.maybe_compile_expr(&expr, None)?, None)
            }
        };

        match assign.operator {
            AssignmentOperator::Equal => {
                if let Some(prop_reg) = maybe_prop_reg {
                    let (value_bc, value_reg) = self.maybe_compile_expr(assign.right.borrow(), None)?;
                    Ok(left_bc
                        .add_bytecode(value_bc)
                        .add(Operation::new(Instruction::PropertySet,
                                vec![Operand::Reg(left_reg), Operand::Reg(prop_reg), Operand::Reg(value_reg)])))
                } else {
                    Ok(left_bc.add_bytecode(self.compile_expr(assign.right.borrow(), left_reg)?))
                }
            }
            _ => {
                let (right_bc, right_reg) = self.maybe_compile_expr(assign.right.borrow(), None)?;
                Ok(left_bc.add_bytecode(right_bc)
                    .add(self.isa.assignment_op(&assign.operator, left_reg, right_reg)))
            }
        }
    }

    fn compile_binary_expr(&mut self, bin: &BinaryExpr, target_reg: Reg) -> BytecodeResult {
        let (left_bc, left_reg) = self.maybe_compile_expr(bin.left.borrow(), None)?;
        let (right_bc, right_reg) = self.maybe_compile_expr(bin.right.borrow(), None)?;

        Ok(left_bc
            .add_bytecode(right_bc)
            .add(self.isa.binary_op(&bin.operator, target_reg, left_reg, right_reg)?)
        )
    }

    fn compile_call_expr(&mut self, call: &CallExpr, target_reg: Reg) -> BytecodeResult {
        match call.callee.borrow() {
            Expr::Ident(ident) => {
                if self.functions.iter().any(|func| func.ident == *ident) {
                    self.compile_bytecode_func_call(ident.to_string(), &call.arguments, target_reg)
                } else {
                    self.compile_extern_func_call(call, target_reg)
                }
            }
            _ => self.compile_extern_func_call(call, target_reg)
        }
    }

    fn compile_conditional_expr(&mut self, conditional: &ConditionalExpr, target_reg: Reg) -> BytecodeResult {
        let (test_bc, test_reg) = self.maybe_compile_expr(conditional.test.borrow(), None)?;
        let (consequent_bc, _) = self.maybe_compile_expr(conditional.consequent.borrow(), Some(target_reg))?;
        let (alt_bc, _) = self.maybe_compile_expr(conditional.alternate.borrow(), Some(target_reg))?;

        let after_alt_label = self.label_generator.generate_label();
        let after_cons_label = self.label_generator.generate_label();

        Ok(test_bc
            .add(Operation::new(Instruction::JumpCond, vec![Operand::Reg(test_reg), Operand::branch_addr(after_alt_label)]))
            .add_bytecode(consequent_bc)
            .add(Operation::new(Instruction::Jump, vec![Operand::branch_addr(after_cons_label)]))
            .add_label(after_alt_label)
            .add_bytecode(alt_bc)
            .add_label(after_cons_label))
    }

    fn compile_bytecode_func_call(&mut self, func: String, args: &[Expr], target_reg: Reg) -> BytecodeResult {
        let (args_bytecode, arg_regs): (Vec<Bytecode>, Vec<Reg>) = args.iter().map(|arg_expr| {
            self.maybe_compile_expr(arg_expr, None)
        }).collect::<CompilerResult<Vec<(Bytecode, Reg)>>>()?.into_iter().unzip();

        Ok(args_bytecode.into_iter().collect::<Bytecode>()
            .add(Operation::new(Instruction::CallBytecodeFunc,
                                vec![Operand::function_addr(func),
                                     Operand::Reg(target_reg),
                                     Operand::bc_func_args(arg_regs)])))
    }

    fn compile_extern_func_call(&mut self, call: &CallExpr, target_reg: Reg) -> BytecodeResult {
        let (callee_bc, callee_reg) = self.maybe_compile_expr(&call.callee, None)?;

        let (callee_this_bc, callee_this_reg) =
            if let Expr::Member(member_expr) = call.callee.borrow() {
                self.maybe_compile_expr(&member_expr.object, None)?
            } else {
                (Bytecode::new(), self.isa.common_literal_reg(&CommonLiteral::Void0))
            };

        let (bytecode, arg_regs): (Vec<Bytecode>, Vec<Reg>) = call.arguments.iter().map(|arg| {
            self.maybe_compile_expr(arg, None)
        }).collect::<CompilerResult<Vec<(Bytecode, Reg)>>>()?.into_iter().unzip();

        Ok(bytecode.into_iter().collect::<Bytecode>()
            .add_bytecode(callee_bc)
            .add_bytecode(callee_this_bc)
            .add(Operation::new(Instruction::CallFunc, vec![
                    Operand::Reg(target_reg),
                    Operand::Reg(callee_reg),
                    Operand::Reg(callee_this_reg),
                    Operand::RegistersArray(arg_regs)
                ]
        )))
    }

    fn compile_operand_assignment(&self, left: Reg, right: Operand) -> BytecodeResult {
        Ok(Bytecode::new().add(self.isa.load_op(left, right)))
    }

    fn compile_identifier_expr(&mut self, ident: &Identifier, target_reg: Reg) -> BytecodeResult {
        match self.scopes.get_var(&ident).map(|decl| decl.clone()) {
            Ok(decl) => self.compile_operand_assignment(target_reg, Operand::Reg(decl.register)),
            Err(_) => match self.functions.iter().find(|func| func.ident == *ident) {
                Some(func) => {
                    Ok(Bytecode::new()
                        .add(Operation::new(Instruction::BytecodeFuncCallback, vec![
                            Operand::Reg(target_reg),
                            Operand::function_addr(ident.clone()),
                            Operand::RegistersArray(func.arguments.clone())])))
                },
                None => {
                    for i in 0..self.scopes.scopes.len()-1 {
                        self.scopes.scopes[i].try_reserve_specific_reg(target_reg)?;
                    }

                    self.decl_dependencies.add_decl_dep(ident.to_string(), target_reg);
                    Ok(Bytecode::new())
                },
            }
        }
    }

    fn compile_literal_expr(&mut self, lit: &Literal, target_reg: Reg) -> BytecodeResult {
        let operand = Operand::from_literal(BytecodeLiteral::from_lit(lit.clone())?)?;
        // This feature is currenlty disabled
        if false { // operand.is_worth_caching()
            self.scopes.add_lit_decl(BytecodeLiteral::from_lit(lit.clone())?, target_reg)?;
        }

        self.compile_operand_assignment(target_reg, operand)
    }

    fn compile_logical_expr(&mut self, logical: &LogicalExpr, target_reg: Reg) -> BytecodeResult {
        let (left_bc, _) = self.maybe_compile_expr(logical.left.borrow(), Some(target_reg))?;
        let (right_bc, _) = self.maybe_compile_expr(logical.right.borrow(), Some(target_reg))?;

        let after_right_label = self.label_generator.generate_label();

        match logical.operator {
            LogicalOperator::And => Ok(left_bc
                .add(Operation::new(Instruction::JumpCondNeg, vec![Operand::Reg(target_reg), Operand::branch_addr(after_right_label)]))
                .add_bytecode(right_bc)
                .add_label(after_right_label)),
            LogicalOperator::Or => Ok(left_bc
                .add(Operation::new(Instruction::JumpCond, vec![Operand::Reg(target_reg), Operand::branch_addr(after_right_label)]))
                .add_bytecode(right_bc)
                .add_label(after_right_label))
        }

    }

    fn compile_member_expr(&mut self, member: &MemberExpr) -> CompilerResult<(Bytecode, Reg, Reg)> {
        let (obj_bc, obj_reg) = self.maybe_compile_expr(member.object.borrow(), None)?;
        let (prop_bc, prop_reg) = if member.computed {
            self.maybe_compile_expr(member.property.borrow(), None)?
        } else {
            match member.property.borrow() {
                Expr::Ident(ident) => self.maybe_compile_expr(&Expr::Literal(Literal::String(format!("\"{}\"", ident))), None)?,
                _ => self.maybe_compile_expr(member.property.borrow(), None)?
            }
        };

        Ok((obj_bc.add_bytecode(prop_bc), obj_reg, prop_reg))
    }

    fn compile_member_expr_access(&mut self, member: &MemberExpr, target_reg: Reg) -> BytecodeResult {
        let (member_bc, obj_reg, prop_reg) = self.compile_member_expr(member)?;

        Ok(member_bc
            .add(Operation::new(Instruction::PropAccess, vec![
                    Operand::Reg(target_reg), Operand::Reg(obj_reg), Operand::Reg(prop_reg)
                ]
            )))
    }

    fn compile_update_expr(&mut self, update: &UpdateExpr, _target_reg: Reg) -> BytecodeResult {
        if update.prefix {
            let (arg_bc, arg_reg) = self.maybe_compile_expr(update.argument.borrow(), None)?;
            Ok(arg_bc.add(self.isa.update_op(&update.operator, arg_reg)))
        } else {
            Err(CompilerError::are_unsupported("suffix update expressions"))
        }
    }

    fn compile_unary_expr(&mut self, unary: &UnaryExpr, target_reg: Reg) -> BytecodeResult {
        if unary.prefix {
            if UnaryOperator::Void == unary.operator {
                let (arg_bc, _) = self.maybe_compile_expr(unary.argument.borrow(), None)?;
                let void0_reg = self.isa.common_literal_reg(&CommonLiteral::Void0);
                Ok(arg_bc
                    .add_bytecode(self.compile_operand_assignment(target_reg, Operand::Reg(void0_reg))?))
            } else {
                let (arg_bc, arg_reg) = self.maybe_compile_expr(unary.argument.borrow(), None)?;
                Ok(arg_bc.add(self.isa.unary_op(&unary.operator, target_reg, arg_reg)?))
            }
        } else {
            Err(CompilerError::are_unsupported("suffix unary expressions"))
        }
    }

    fn compile_func(&mut self, func: &Function) -> BytecodeResult {
        if func.generator || func.is_async {
            return Err(CompilerError::are_unsupported("generator and async functions"))
        }

        let func_ident =  match &func.id {
            Some(ident) => ident.to_string(),
            None => { return Err(CompilerError::are_unsupported("anonymous functions")); }
        };

        self.scopes.enter_new_scope()?;

        let arg_regs = func.params.iter().map(|param| {
            match param {
                FunctionArg::Expr(expr) => match expr {
                    Expr::Ident(ident) => self.scopes.add_decl(ident.to_string(), DeclarationType::Function),
                    _ => Err(CompilerError::Custom("Only identifiers are accepted as function arguments".into()))
                },
                FunctionArg::Pat(pat) => match pat {
                    Pat::Identifier(ident) => self.scopes.add_decl(ident.to_string(), DeclarationType::Function),
                    _ => Err(CompilerError::Custom("Only identifiers are accepted as function arguments".into()))
                }
            }
        }).collect::<CompilerResult<Vec<Register>>>()?;

        self.functions.push(BytecodeFunction::new_phantom(func_ident, arg_regs));

        let mut func_bc = func.body.iter().map(|part| self.compile_program_part(&part))
                                   .collect::<BytecodeResult>()?;

        if !func_bc.last_op_is_return() {
            func_bc = func_bc.add_bytecode(self.compile_return_stmt(&None)?)
        }

        let func_scope = self.scopes.leave_current_scope()?;
        let used_decls = func_scope.used_decls.into_iter().map(|used_decl| used_decl.register).collect();

        // It is save to unwrap here since it was definitly pushed above
        let phantom_func = self.functions.pop().unwrap();
        self.functions.push(BytecodeFunction::from_phantom(phantom_func, func_bc, used_decls));

        Ok(Bytecode::new())
    }

    fn finalize_label_addresses(&self, mut bc: Bytecode, offset: usize) -> BytecodeResult {
        let mut offset_counter = offset;
        let label_offsets: HashMap<Label, usize> = bc.elements.iter().filter_map(|element| {
            match element {
                BytecodeElement::Operation(cmd) => {offset_counter += cmd.length_in_bytes(); None},
                BytecodeElement::Label(label) => Some((label.clone(), offset_counter.clone()))
            }
        }).collect();

        for cmd in bc.commands_iter_mut() {
            for op in cmd.operands.iter_mut() {
                if let Operand::BranchAddr(token) = op {
                    *op = Operand::LongNum(*label_offsets.get(&token.label).ok_or(
                        CompilerError::Custom(format!("Found unknown label {}", token.label))
                    )? as i32);
                }
            }
        }

        Ok(bc)
    }

    fn finalize_function_bytescodes(&self, main: Bytecode) -> BytecodeResult {
        let mut functions_and_offsets: HashMap<String, (usize, &BytecodeFunction)> = HashMap::new();
        let mut offset_counter = main.length_in_bytes();

        let functions_bytecode = self.functions.iter().map(|func| -> BytecodeResult {
            functions_and_offsets.insert(func.ident.to_string(), (offset_counter, func));

            let func_bc = func.bytecode.clone().expect("Found phantom function defintion");
            let finalized_func_bc = self.finalize_label_addresses(func_bc, offset_counter)?;
            offset_counter += finalized_func_bc.length_in_bytes();

            Ok(finalized_func_bc)
        }).collect::<BytecodeResult>()?;

        let mut complete_bytecode = main.add_bytecode(functions_bytecode);

        // Patch bytecode function argument lists
        for cmd in complete_bytecode.commands_iter_mut() {
            if let Instruction::CallBytecodeFunc = cmd.instruction {
                let target_func = cmd.operands.get(0).expect("Failed to retrieve bytecode functions token");
                let args = cmd.operands.get(2).expect("Failed to retrieve bytecode functions argument list");

                let func = match target_func {
                    Operand::FunctionAddr(token) => functions_and_offsets.get(&token.ident).ok_or(
                        CompilerError::Custom(format!("Found unknown function ident {}", token.ident))
                    )?.1,
                    _ => { return Err(CompilerError::Custom(
                        "Bytecode function name should be a function address token".into())) }
                };

                if let Operand::FunctionArguments(arg_regs) = args {
                    cmd.operands[2] = Operand::RegistersArray(
                        func.arguments.iter().zip(arg_regs.args.iter()).map(|(&a, &b)| vec![a, b]).flatten().collect()
                    );
                } else {
                    return Err(CompilerError::Custom(
                        "Bytecode function argument should be a bytecode func args placeholder".into()))
                }
            }
        }

        // Replace function tokens (function names) with their corresponding bytecode offset
        for cmd in complete_bytecode.commands_iter_mut() {
            for op in cmd.operands.iter_mut() {
                if let Operand::FunctionAddr(token) = op {
                    *op = Operand::LongNum(functions_and_offsets.get(&token.ident).ok_or(
                        CompilerError::Custom(format!("Found unknown function ident {}", token.ident))
                    )?.0 as i32);
                }
            }
        }

        Ok(complete_bytecode)
    }
}

#[test]
fn test_bytecode_compile_var_decl() {
    assert_eq!(BytecodeCompiler::new().compile_var_decl(&VariableKind::Var, &vec![
            VariableDecl{id: Pat::Identifier("testVar".into()), init: None}
        ]).unwrap(),
        Bytecode::new());

    let mut test_expr_ident = BytecodeCompiler::new();
    let test_expr_ident_reg = test_expr_ident.scopes.add_var_decl("anotherVar".into()).unwrap();
    assert_eq!(test_expr_ident.compile_var_decl(&VariableKind::Var, &vec![
            VariableDecl{id: Pat::Identifier("testVar".into()), init: Some(Expr::Ident("anotherVar".into()))}
        ]).unwrap(),
        Bytecode::new().add(Operation::new(Instruction::Copy,
            vec![Operand::Reg(test_expr_ident.scopes.get_var("testVar".into()).unwrap().register),
                 Operand::Reg(test_expr_ident_reg)])));

     let mut test_expr_str_lit = BytecodeCompiler::new();
     assert_eq!(test_expr_str_lit.compile_var_decl(&VariableKind::Var, &vec![
             VariableDecl{id: Pat::Identifier("testVar".into()), init: Some(Expr::Literal(Literal::String("\"TestString\"".into())))}
         ]).unwrap(),
         Bytecode::new().add(Operation::new(Instruction::LoadString,
             vec![Operand::Reg(test_expr_str_lit.scopes.get_var("testVar".into()).unwrap().register),
                  Operand::String("TestString".into())])));
}