1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
// HERE BE DRAGONS!
// ================
//
// Making a fast parser is hard. This is a _not so naive_ implementation of
// recursive descent that does almost nothing. _There is no backtracking_, the
// whole parsing is 100% predictive, even though it's not BNF, and will have
// linear performance based on the length of the source!
//
// There is a lot of macros here! Like, woah! This is mostly due to the fact
// that Rust isn't very cool about optimizing inlined functions that return
// a `Result` type. Since different functions will have different `Result`
// signatures, the `try!` macro will always have to repackage our results.
// With macros those issues don't exist, the macro will return an unpackaged
// result - whatever it is - and if we ever stumble upon the error, we can
// return an `Err` without worrying about the exact signature of `Result`.
//
// This makes for some ugly code, but it is faster. Hopefully in the future
// with MIR support the compiler will get smarter about this.

use std::{ str, slice };
use object::Object;
use number::Number;
use { JsonValue, Error, Result };

// This is not actual max precision, but a threshold at which number parsing
// kicks into checked math.
const MAX_PRECISION: u64 = 576460752303423500;


// How many nested Objects/Arrays are allowed to be parsed
const DEPTH_LIMIT: usize = 512;


// The `Parser` struct keeps track of indexing over our buffer. All niceness
// has been abandoned in favor of raw pointer magic. Does that make you feel
// dirty? _Good._
struct Parser<'a> {
    // Helper buffer for parsing strings that can't be just memcopied from
    // the original source (escaped characters)
    buffer: Vec<u8>,

    // String slice to parse
    source: &'a str,

    // Byte pointer to the slice above
    byte_ptr: *const u8,

    // Current index
    index: usize,

    // Length of the source
    length: usize,
}


// Read a byte from the source.
// Will return an error if there are no more bytes.
macro_rules! expect_byte {
    ($parser:ident) => ({
        if $parser.is_eof() {
            return Err(Error::UnexpectedEndOfJson);
        }

        let ch = $parser.read_byte();
        $parser.bump();
        ch
    })
}


// Expect a sequence of specific bytes in specific order, error otherwise.
// This is useful for reading the 3 JSON identifiers:
//
// - "t" has to be followed by "rue"
// - "f" has to be followed by "alse"
// - "n" has to be followed by "ull"
//
// Anything else is an error.
macro_rules! expect_sequence {
    ($parser:ident, $( $ch:pat ),*) => {
        $(
            match expect_byte!($parser) {
                $ch => {},
                _   => return $parser.unexpected_character(),
            }
        )*
    }
}


// A drop in macro for when we expect to read a byte, but we don't care
// about any whitespace characters that might occur before it.
macro_rules! expect_byte_ignore_whitespace {
    ($parser:ident) => ({
        let mut ch = expect_byte!($parser);

        // Don't go straight for the loop, assume we are in the clear first.
        match ch {
            // whitespace
            9 ... 13 | 32 => {
                loop {
                    match expect_byte!($parser) {
                        9 ... 13 | 32 => {},
                        next          => {
                            ch = next;
                            break;
                        }
                    }
                }
            },
            _ => {}
        }

        ch
    })
}

// Expect to find EOF or just whitespaces leading to EOF after a JSON value
macro_rules! expect_eof {
    ($parser:ident) => ({
        while !$parser.is_eof() {
            match $parser.read_byte() {
                9 ... 13 | 32 => $parser.bump(),
                _             => {
                    $parser.bump();
                    return $parser.unexpected_character();
                }
            }
        }
    })
}

// Expect a particular byte to be next. Also available with a variant
// creates a `match` expression just to ease some pain.
macro_rules! expect {
    ($parser:ident, $byte:expr) => ({
        let ch = expect_byte_ignore_whitespace!($parser);

        if ch != $byte {
            return $parser.unexpected_character()
        }
    });

    {$parser:ident $(, $byte:pat => $then:expr )*} => ({
        let ch = expect_byte_ignore_whitespace!($parser);

        match ch {
            $(
                $byte => $then,
            )*
            _ => return $parser.unexpected_character()
        }

    })
}


// Look up table that marks which characters are allowed in their raw
// form in a string.
const QU: bool = false;  // double quote       0x22
const BS: bool = false;  // backslash          0x5C
const CT: bool = false;  // control character  0x00 ... 0x1F
const __: bool = true;

static ALLOWED: [bool; 256] = [
// 0   1   2   3   4   5   6   7   8   9   A   B   C   D   E   F
  CT, CT, CT, CT, CT, CT, CT, CT, CT, CT, CT, CT, CT, CT, CT, CT, // 0
  CT, CT, CT, CT, CT, CT, CT, CT, CT, CT, CT, CT, CT, CT, CT, CT, // 1
  __, __, QU, __, __, __, __, __, __, __, __, __, __, __, __, __, // 2
  __, __, __, __, __, __, __, __, __, __, __, __, __, __, __, __, // 3
  __, __, __, __, __, __, __, __, __, __, __, __, __, __, __, __, // 4
  __, __, __, __, __, __, __, __, __, __, __, __, BS, __, __, __, // 5
  __, __, __, __, __, __, __, __, __, __, __, __, __, __, __, __, // 6
  __, __, __, __, __, __, __, __, __, __, __, __, __, __, __, __, // 7
  __, __, __, __, __, __, __, __, __, __, __, __, __, __, __, __, // 8
  __, __, __, __, __, __, __, __, __, __, __, __, __, __, __, __, // 9
  __, __, __, __, __, __, __, __, __, __, __, __, __, __, __, __, // A
  __, __, __, __, __, __, __, __, __, __, __, __, __, __, __, __, // B
  __, __, __, __, __, __, __, __, __, __, __, __, __, __, __, __, // C
  __, __, __, __, __, __, __, __, __, __, __, __, __, __, __, __, // D
  __, __, __, __, __, __, __, __, __, __, __, __, __, __, __, __, // E
  __, __, __, __, __, __, __, __, __, __, __, __, __, __, __, __, // F
];


// Expect a string. This is called after encountering, and consuming, a
// double quote character. This macro has a happy path variant where it
// does almost nothing as long as all characters are allowed (as described
// in the look up table above). If it encounters a closing quote without
// any escapes, it will use a slice straight from the source, avoiding
// unnecessary buffering.
macro_rules! expect_string {
    ($parser:ident) => ({
        let result: &str;
        let start = $parser.index;

        loop {
            let ch = expect_byte!($parser);
            if ALLOWED[ch as usize] {
                continue;
            }
            if ch == b'"' {
                unsafe {
                    let ptr = $parser.byte_ptr.offset(start as isize);
                    let len = $parser.index - 1 - start;
                    result = str::from_utf8_unchecked(slice::from_raw_parts(ptr, len));
                }
                break;
            }
            if ch == b'\\' {
                result = try!($parser.read_complex_string(start));
                break;
            }

            return $parser.unexpected_character();
        }

        result
    })
}


// Expect a number. Of some kind.
macro_rules! expect_number {
    ($parser:ident, $first:ident) => ({
        let mut num = ($first - b'0') as u64;

        let result: Number;

        // Cap on how many iterations we do while reading to u64
        // in order to avoid an overflow.
        loop {
            if num >= MAX_PRECISION {
                result = try!($parser.read_big_number(num));
                break;
            }

            if $parser.is_eof() {
                result = num.into();
                break;
            }

            let ch = $parser.read_byte();

            match ch {
                b'0' ... b'9' => {
                    $parser.bump();
                    num = num * 10 + (ch - b'0') as u64;
                },
                _             => {
                    let mut e = 0;
                    result = allow_number_extensions!($parser, num, e, ch);
                    break;
                }
            }
        }

        result
    })
}


// Invoked after parsing an integer, this will account for fractions and/or
// `e` notation.
macro_rules! allow_number_extensions {
    ($parser:ident, $num:ident, $e:ident, $ch:ident) => ({
        match $ch {
            b'.'        => {
                $parser.bump();
                expect_fraction!($parser, $num, $e)
            },
            b'e' | b'E' => {
                $parser.bump();
                try!($parser.expect_exponent($num, $e))
            },
            _  => $num.into()
        }
    });

    // Alternative variant that defaults everything to 0. This is actually
    // quite handy as the only number that can begin with zero, has to have
    // a zero mantissa. Leading zeroes are illegal in JSON!
    ($parser:ident) => ({
        if $parser.is_eof() {
            0.into()
        } else {
            let mut num = 0;
            let mut e = 0;
            let ch = $parser.read_byte();
            allow_number_extensions!($parser, num, e, ch)
        }
    })
}


// If a dot `b"."` byte has been read, start reading the decimal fraction
// of the number.
macro_rules! expect_fraction {
    ($parser:ident, $num:ident, $e:ident) => ({
        let result: Number;

        let ch = expect_byte!($parser);

        match ch {
            b'0' ... b'9' => {
                if $num < MAX_PRECISION {
                    $num = $num * 10 + (ch - b'0') as u64;
                    $e -= 1;
                } else {
                    match $num.checked_mul(10).and_then(|num| {
                        num.checked_add((ch - b'0') as u64)
                    }) {
                        Some(result) => {
                            $num = result;
                            $e -= 1;
                        },
                        None => {}
                    }
                }
            },
            _ => return $parser.unexpected_character()
        }

        loop {
            if $parser.is_eof() {
                result = unsafe { Number::from_parts_unchecked(true, $num, $e) };
                break;
            }
            let ch = $parser.read_byte();

            match ch {
                b'0' ... b'9' => {
                    $parser.bump();
                    if $num < MAX_PRECISION {
                        $num = $num * 10 + (ch - b'0') as u64;
                        $e -= 1;
                    } else {
                        match $num.checked_mul(10).and_then(|num| {
                            num.checked_add((ch - b'0') as u64)
                        }) {
                            Some(result) => {
                                $num = result;
                                $e -= 1;
                            },
                            None => {}
                        }
                    }
                },
                b'e' | b'E' => {
                    $parser.bump();
                    result = try!($parser.expect_exponent($num, $e));
                    break;
                }
                _ => {
                    result = unsafe { Number::from_parts_unchecked(true, $num, $e) };
                    break;
                }
            }
        }

        result
    })
}

impl<'a> Parser<'a> {
    pub fn new(source: &'a str) -> Self {
        Parser {
            buffer: Vec::with_capacity(30),
            source: source,
            byte_ptr: source.as_ptr(),
            index: 0,
            length: source.len(),
        }
    }

    // Check if we are at the end of the source.
    #[inline(always)]
    fn is_eof(&mut self) -> bool {
        self.index == self.length
    }

    // Read a byte from the source. Note that this does not increment
    // the index. In few cases (all of them related to number parsing)
    // we want to peek at the byte before doing anything. This will,
    // very very rarely, lead to a situation where the same byte is read
    // twice, but since this operation is using a raw pointer, the cost
    // is virtually irrelevant.
    #[inline(always)]
    fn read_byte(&mut self) -> u8 {
        debug_assert!(self.index < self.length, "Reading out of bounds");

        unsafe { *self.byte_ptr.offset(self.index as isize) }
    }

    // Manually increment the index. Calling `read_byte` and then `bump`
    // is equivalent to consuming a byte on an iterator.
    #[inline(always)]
    fn bump(&mut self) {
        self.index = self.index.wrapping_add(1);
    }

    // So we got an unexpected character, now what? Well, figure out where
    // it is, and throw an error!
    fn unexpected_character<T: Sized>(&mut self) -> Result<T> {
        let at = self.index - 1;

        let ch = self.source[at..]
                     .chars()
                     .next()
                     .expect("Must have a character");

        let (lineno, col) = self.source[..at]
                                .lines()
                                .enumerate()
                                .last()
                                .unwrap_or((0, ""));

        let colno = col.chars().count();

        Err(Error::UnexpectedCharacter {
            ch: ch,
            line: lineno + 1,
            column: colno + 1,
        })
    }

    // Boring
    fn read_hexdec_digit(&mut self) -> Result<u32> {
        let ch = expect_byte!(self);
        Ok(match ch {
            b'0' ... b'9' => (ch - b'0'),
            b'a' ... b'f' => (ch + 10 - b'a'),
            b'A' ... b'F' => (ch + 10 - b'A'),
            _             => return self.unexpected_character(),
        } as u32)
    }

    // Boring
    fn read_hexdec_codepoint(&mut self) -> Result<u32> {
        Ok(
            try!(self.read_hexdec_digit()) << 12 |
            try!(self.read_hexdec_digit()) << 8  |
            try!(self.read_hexdec_digit()) << 4  |
            try!(self.read_hexdec_digit())
        )
    }

    // Oh look, some action. This method reads an escaped unicode
    // sequence such as `\uDEAD` from the string. Except `DEAD` is
    // not a valid codepoint, so it also needs to handle errors...
    fn read_codepoint(&mut self) -> Result<()> {
        let mut codepoint = try!(self.read_hexdec_codepoint());

        match codepoint {
            0x0000 ... 0xD7FF => {},
            0xD800 ... 0xDBFF => {
                codepoint -= 0xD800;
                codepoint <<= 10;

                expect_sequence!(self, b'\\', b'u');

                let lower = try!(self.read_hexdec_codepoint());

                if let 0xDC00 ... 0xDFFF = lower {
                    codepoint = (codepoint | lower - 0xDC00) + 0x010000;
                } else {
                    return Err(Error::FailedUtf8Parsing)
                }
            },
            0xE000 ... 0xFFFF => {},
            _ => return Err(Error::FailedUtf8Parsing)
        }

        match codepoint {
            0x0000 ... 0x007F => self.buffer.push(codepoint as u8),
            0x0080 ... 0x07FF => self.buffer.extend_from_slice(&[
                (((codepoint >> 6) as u8) & 0x1F) | 0xC0,
                ((codepoint        as u8) & 0x3F) | 0x80
            ]),
            0x0800 ... 0xFFFF => self.buffer.extend_from_slice(&[
                (((codepoint >> 12) as u8) & 0x0F) | 0xE0,
                (((codepoint >> 6)  as u8) & 0x3F) | 0x80,
                ((codepoint         as u8) & 0x3F) | 0x80
            ]),
            0x10000 ... 0x10FFFF => self.buffer.extend_from_slice(&[
                (((codepoint >> 18) as u8) & 0x07) | 0xF0,
                (((codepoint >> 12) as u8) & 0x3F) | 0x80,
                (((codepoint >> 6)  as u8) & 0x3F) | 0x80,
                ((codepoint         as u8) & 0x3F) | 0x80
            ]),
            _ => return Err(Error::FailedUtf8Parsing)
        }

        Ok(())
    }

    // What's so complex about strings you may ask? Not that much really.
    // This method is called if the `expect_string!` macro encounters an
    // escape. The added complexity is that it will have to use an internal
    // buffer to read all the escaped characters into, before finally
    // producing a usable slice. What it means it that parsing "foo\bar"
    // is whole lot slower than parsing "foobar", as the former suffers from
    // having to be read from source to a buffer and then from a buffer to
    // our target string. Nothing to be done about this, really.
    fn read_complex_string<'b>(&mut self, start: usize) -> Result<&'b str> {
        self.buffer.clear();
        let mut ch = b'\\';

        // TODO: Use fastwrite here as well
        self.buffer.extend_from_slice(self.source[start .. self.index - 1].as_bytes());

        loop {
            if ALLOWED[ch as usize] {
                self.buffer.push(ch);
                ch = expect_byte!(self);
                continue;
            }
            match ch {
                b'"'  => break,
                b'\\' => {
                    let escaped = expect_byte!(self);
                    let escaped = match escaped {
                        b'u'  => {
                            try!(self.read_codepoint());
                            ch = expect_byte!(self);
                            continue;
                        },
                        b'"'  |
                        b'\\' |
                        b'/'  => escaped,
                        b'b'  => 0x8,
                        b'f'  => 0xC,
                        b't'  => b'\t',
                        b'r'  => b'\r',
                        b'n'  => b'\n',
                        _     => return self.unexpected_character()
                    };
                    self.buffer.push(escaped);
                },
                _ => return self.unexpected_character()
            }
            ch = expect_byte!(self);
        }

        // Since the original source is already valid UTF-8, and `\`
        // cannot occur in front of a codepoint > 127, this is safe.
        Ok(unsafe {
            str::from_utf8_unchecked(
                // Because the buffer is stored on the parser, returning it
                // as a slice here freaks out the borrow checker. The compiler
                // can't know that the buffer isn't used till the result
                // of this function is long used and irrelevant. To avoid
                // issues here, we construct a new slice from raw parts, which
                // then has lifetime bound to the outer function scope instead
                // of the parser itself.
                slice::from_raw_parts(self.buffer.as_ptr(), self.buffer.len())
            )
        })
    }

    // Big numbers! If the `expect_number!` reaches a point where the decimal
    // mantissa could have overflown the size of u64, it will switch to this
    // control path instead. This method will pick up where the macro started,
    // but instead of continuing to read into the mantissa, it will increment
    // the exponent. Note that no digits are actually read here, as we already
    // exceeded the precision range of f64 anyway.
    fn read_big_number(&mut self, mut num: u64) -> Result<Number> {
        let mut e = 0i16;
        loop {
            if self.is_eof() {
                return Ok(unsafe { Number::from_parts_unchecked(true, num, e) });
            }
            let ch = self.read_byte();
            match ch {
                b'0' ... b'9' => {
                    self.bump();
                    match num.checked_mul(10).and_then(|num| {
                        num.checked_add((ch - b'0') as u64)
                    }) {
                        Some(result) => num = result,
                        None         => e = e.checked_add(1).ok_or_else(|| Error::ExceededDepthLimit)?,
                    }
                },
                b'.' => {
                    self.bump();
                    return Ok(expect_fraction!(self, num, e));
                },
                b'e' | b'E' => {
                    self.bump();
                    return self.expect_exponent(num, e);
                }
                _  => break
            }
        }

        Ok(unsafe { Number::from_parts_unchecked(true, num, e) })
    }

    // Called in the rare case that a number with `e` notation has been
    // encountered. This is pretty straight forward, I guess.
    fn expect_exponent(&mut self, num: u64, big_e: i16) -> Result<Number> {
        let mut ch = expect_byte!(self);
        let sign = match ch {
            b'-' => {
                ch = expect_byte!(self);
                -1
            },
            b'+' => {
                ch = expect_byte!(self);
                1
            },
            _    => 1
        };

        let mut e = match ch {
            b'0' ... b'9' => (ch - b'0') as i16,
            _ => return self.unexpected_character(),
        };

        loop {
            if self.is_eof() {
                break;
            }
            let ch = self.read_byte();
            match ch {
                b'0' ... b'9' => {
                    self.bump();
                    e = e.saturating_mul(10).saturating_add((ch - b'0') as i16);
                },
                _  => break
            }
        }

        Ok(unsafe { Number::from_parts_unchecked(true, num, big_e.saturating_add(e * sign)) })
    }

    // Parse away!
    fn parse(&mut self) -> Result<JsonValue> {
        let mut stack = Vec::with_capacity(3);
        let mut ch = expect_byte_ignore_whitespace!(self);

        'parsing: loop {
            let mut value = match ch {
                b'[' => {
                    ch = expect_byte_ignore_whitespace!(self);

                    if ch != b']' {
                        if stack.len() == DEPTH_LIMIT {
                            return Err(Error::ExceededDepthLimit);
                        }

                        stack.push(StackBlock(JsonValue::Array(Vec::with_capacity(2)), 0));
                        continue 'parsing;
                    }

                    JsonValue::Array(Vec::new())
                },
                b'{' => {
                    ch = expect_byte_ignore_whitespace!(self);

                    if ch != b'}' {
                        if stack.len() == DEPTH_LIMIT {
                            return Err(Error::ExceededDepthLimit);
                        }

                        let mut object = Object::with_capacity(3);

                        if ch != b'"' {
                            return self.unexpected_character()
                        }

                        let index = object.insert_index(expect_string!(self), JsonValue::Null);
                        expect!(self, b':');

                        stack.push(StackBlock(JsonValue::Object(object), index));

                        ch = expect_byte_ignore_whitespace!(self);

                        continue 'parsing;
                    }

                    JsonValue::Object(Object::new())
                },
                b'"' => expect_string!(self).into(),
                b'0' => JsonValue::Number(allow_number_extensions!(self)),
                b'1' ... b'9' => {
                    JsonValue::Number(expect_number!(self, ch))
                },
                b'-' => {
                    let ch = expect_byte!(self);
                    JsonValue::Number(- match ch {
                        b'0' => allow_number_extensions!(self),
                        b'1' ... b'9' => expect_number!(self, ch),
                        _    => return self.unexpected_character()
                    })
                }
                b't' => {
                    expect_sequence!(self, b'r', b'u', b'e');
                    JsonValue::Boolean(true)
                },
                b'f' => {
                    expect_sequence!(self, b'a', b'l', b's', b'e');
                    JsonValue::Boolean(false)
                },
                b'n' => {
                    expect_sequence!(self, b'u', b'l', b'l');
                    JsonValue::Null
                },
                _    => return self.unexpected_character()
            };

            'popping: loop {
                match stack.last_mut() {
                    None => {
                        expect_eof!(self);

                        return Ok(value);
                    },

                    Some(&mut StackBlock(JsonValue::Array(ref mut array), _)) => {
                        array.push(value);

                        ch = expect_byte_ignore_whitespace!(self);

                        match ch {
                            b',' => {
                                ch = expect_byte_ignore_whitespace!(self);

                                continue 'parsing;
                            },
                            b']' => {},
                            _    => return self.unexpected_character()
                        }
                    },

                    Some(&mut StackBlock(JsonValue::Object(ref mut object), ref mut index )) => {
                        object.override_at(*index, value);

                        ch = expect_byte_ignore_whitespace!(self);

                        match ch {
                            b',' => {
                                expect!(self, b'"');
                                *index = object.insert_index(expect_string!(self), JsonValue::Null);
                                expect!(self, b':');

                                ch = expect_byte_ignore_whitespace!(self);

                                continue 'parsing;
                            },
                            b'}' => {},
                            _    => return self.unexpected_character()
                        }
                    },

                    _ => unreachable!(),
                }

                value = match stack.pop() {
                    Some(StackBlock(value, _)) => value,
                    None                       => break 'popping
                }
            }
        }
    }
}

struct StackBlock(JsonValue, usize);

// All that hard work, and in the end it's just a single function in the API.
#[inline]
pub fn parse(source: &str) -> Result<JsonValue> {
    Parser::new(source).parse()
}