1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
//! An implementation of the GNU make jobserver.
//!
//! This crate is an implementation, in Rust, of the GNU `make` jobserver for
//! CLI tools that are interoperating with make or otherwise require some form
//! of parallelism limiting across process boundaries. This was originally
//! written for usage in Cargo to both (a) work when `cargo` is invoked from
//! `make` (using `make`'s jobserver) and (b) work when `cargo` invokes build
//! scripts, exporting a jobserver implementation for `make` processes to
//! transitively use.
//!
//! The jobserver implementation can be found in [detail online][docs] but
//! basically boils down to a cross-process semaphore. On Unix this is
//! implemented with the `pipe` syscall and read/write ends of a pipe and on
//! Windows this is implemented literally with IPC semaphores.
//!
//! The jobserver protocol in `make` also dictates when tokens are acquired to
//! run child work, and clients using this crate should take care to implement
//! such details to ensure correct interoperation with `make` itself.
//!
//! ## Examples
//!
//! Connect to a jobserver that was set up by `make` or a different process:
//!
//! ```no_run
//! use jobserver::Client;
//!
//! // See API documentation for why this is `unsafe`
//! let client = match unsafe { Client::from_env() } {
//!     Some(client) => client,
//!     None => panic!("client not configured"),
//! };
//! ```
//!
//! Acquire and release token from a jobserver:
//!
//! ```no_run
//! use jobserver::Client;
//!
//! let client = unsafe { Client::from_env().unwrap() };
//! let token = client.acquire().unwrap(); // blocks until it is available
//! drop(token); // releases the token when the work is done
//! ```
//!
//! Create a new jobserver and configure a child process to have access:
//!
//! ```
//! use std::process::Command;
//! use jobserver::Client;
//!
//! let client = Client::new(4).expect("failed to create jobserver");
//! let mut cmd = Command::new("make");
//! client.configure(&mut cmd);
//! ```
//!
//! ## Caveats
//!
//! This crate makes no attempt to release tokens back to a jobserver on
//! abnormal exit of a process. If a process which acquires a token is killed
//! with ctrl-c or some similar signal then tokens will not be released and the
//! jobserver may be in a corrupt state.
//!
//! Note that this is typically ok as ctrl-c means that an entire build process
//! is being torn down, but it's worth being aware of at least!
//!
//! ## Windows caveats
//!
//! There appear to be two implementations of `make` on Windows. On MSYS2 one
//! typically comes as `mingw32-make` and the other as `make` itself. I'm not
//! personally too familiar with what's going on here, but for jobserver-related
//! information the `mingw32-make` implementation uses Windows semaphores
//! whereas the `make` program does not. The `make` program appears to use file
//! descriptors and I'm not really sure how it works, so this crate is not
//! compatible with `make` on Windows. It is, however, compatible with
//! `mingw32-make`.
//!
//! [docs]: http://make.mad-scientist.net/papers/jobserver-implementation/

#![deny(missing_docs, missing_debug_implementations)]
#![doc(html_root_url = "https://docs.rs/jobserver/0.1")]

use std::env;
use std::io;
use std::process::Command;
use std::sync::{Arc, Condvar, Mutex, MutexGuard};

/// A client of a jobserver
///
/// This structure is the main type exposed by this library, and is where
/// interaction to a jobserver is configured through. Clients are either created
/// from scratch in which case the internal semphore is initialied on the spot,
/// or a client is created from the environment to connect to a jobserver
/// already created.
///
/// Some usage examples can be found in the crate documentation for using a
/// client.
///
/// Note that a `Client` implements the `Clone` trait, and all instances of a
/// `Client` refer to the same jobserver instance.
#[derive(Clone, Debug)]
pub struct Client {
    inner: Arc<imp::Client>,
}

/// An acquired token from a jobserver.
///
/// This token will be released back to the jobserver when it is dropped and
/// otherwise represents the ability to spawn off another thread of work.
#[derive(Debug)]
pub struct Acquired {
    client: Arc<imp::Client>,
    data: imp::Acquired,
}

#[derive(Default, Debug)]
struct HelperState {
    lock: Mutex<HelperInner>,
    cvar: Condvar,
}

#[derive(Default, Debug)]
struct HelperInner {
    requests: usize,
    producer_done: bool,
    consumer_done: bool,
}

impl Client {
    /// Creates a new jobserver initialized with the given parallelism limit.
    ///
    /// A client to the jobserver created will be returned. This client will
    /// allow at most `limit` tokens to be acquired from it in parallel. More
    /// calls to `acquire` will cause the calling thread to block.
    ///
    /// Note that the created `Client` is not automatically inherited into
    /// spawned child processes from this program. Manual usage of the
    /// `configure` function is required for a child process to have access to a
    /// job server.
    ///
    /// # Examples
    ///
    /// ```
    /// use jobserver::Client;
    ///
    /// let client = Client::new(4).expect("failed to create jobserver");
    /// ```
    ///
    /// # Errors
    ///
    /// Returns an error if any I/O error happens when attempting to create the
    /// jobserver client.
    pub fn new(limit: usize) -> io::Result<Client> {
        Ok(Client {
            inner: Arc::new(imp::Client::new(limit)?),
        })
    }

    /// Attempts to connect to the jobserver specified in this process's
    /// environment.
    ///
    /// When the a `make` executable calls a child process it will configure the
    /// environment of the child to ensure that it has handles to the jobserver
    /// it's passing down. This function will attempt to look for these details
    /// and connect to the jobserver.
    ///
    /// Note that the created `Client` is not automatically inherited into
    /// spawned child processes from this program. Manual usage of the
    /// `configure` function is required for a child process to have access to a
    /// job server.
    ///
    /// # Return value
    ///
    /// If a jobserver was found in the environment and it looks correct then
    /// `Some` of the connected client will be returned. If no jobserver was
    /// found then `None` will be returned.
    ///
    /// Note that on Unix the `Client` returned **takes ownership of the file
    /// descriptors specified in the environment**. Jobservers on Unix are
    /// implemented with `pipe` file descriptors, and they're inherited from
    /// parent processes. This `Client` returned takes ownership of the file
    /// descriptors for this process and will close the file descriptors after
    /// this value is dropped.
    ///
    /// Additionally on Unix this function will configure the file descriptors
    /// with `CLOEXEC` so they're not automatically inherited by spawned
    /// children.
    ///
    /// # Unsafety
    ///
    /// This function is `unsafe` to call on Unix specifically as it
    /// transitively requires usage of the `from_raw_fd` function, which is
    /// itself unsafe in some circumstances.
    ///
    /// It's recommended to call this function very early in the lifetime of a
    /// program before any other file descriptors are opened. That way you can
    /// make sure to take ownership properly of the file descriptors passed
    /// down, if any.
    ///
    /// It's generally unsafe to call this function twice in a program if the
    /// previous invocation returned `Some`.
    ///
    /// Note, though, that on Windows it should be safe to call this function
    /// any number of times.
    pub unsafe fn from_env() -> Option<Client> {
        let var = match env::var("CARGO_MAKEFLAGS")
            .or(env::var("MAKEFLAGS"))
            .or(env::var("MFLAGS"))
        {
            Ok(s) => s,
            Err(_) => return None,
        };
        let mut arg = "--jobserver-fds=";
        let pos = match var.find(arg) {
            Some(i) => i,
            None => {
                arg = "--jobserver-auth=";
                match var.find(arg) {
                    Some(i) => i,
                    None => return None,
                }
            }
        };

        let s = var[pos + arg.len()..].split(' ').next().unwrap();
        imp::Client::open(s).map(|c| Client { inner: Arc::new(c) })
    }

    /// Acquires a token from this jobserver client.
    ///
    /// This function will block the calling thread until a new token can be
    /// acquired from the jobserver.
    ///
    /// # Return value
    ///
    /// On successful acquisition of a token an instance of `Acquired` is
    /// returned. This structure, when dropped, will release the token back to
    /// the jobserver. It's recommended to avoid leaking this value.
    ///
    /// # Errors
    ///
    /// If an I/O error happens while acquiring a token then this function will
    /// return immediately with the error. If an error is returned then a token
    /// was not acquired.
    pub fn acquire(&self) -> io::Result<Acquired> {
        let data = self.inner.acquire()?;
        Ok(Acquired {
            client: self.inner.clone(),
            data: data,
        })
    }

    /// Configures a child process to have access to this client's jobserver as
    /// well.
    ///
    /// This function is required to be called to ensure that a jobserver is
    /// properly inherited to a child process. If this function is *not* called
    /// then this `Client` will not be accessible in the child process. In other
    /// words, if not called, then `Client::from_env` will return `None` in the
    /// child process (or the equivalent of `Child::from_env` that `make` uses).
    ///
    /// ## Platform-specific behavior
    ///
    /// On Unix and Windows this will clobber the `CARGO_MAKEFLAGS` environment
    /// variables for the child process, and on Unix this will also allow the
    /// two file descriptors for this client to be inherited to the child.
    ///
    /// On platforms other than Unix and Windows this panics.
    pub fn configure(&self, cmd: &mut Command) {
        let arg = self.inner.string_arg();
        // Older implementations of make use `--jobserver-fds` and newer
        // implementations use `--jobserver-auth`, pass both to try to catch
        // both implementations.
        let value = format!("--jobserver-fds={0} --jobserver-auth={0}", arg);
        cmd.env("CARGO_MAKEFLAGS", &value);
        self.inner.configure(cmd);
    }

    /// Converts this `Client` into a helper thread to deal with a blocking
    /// `acquire` function a little more easily.
    ///
    /// The fact that the `acquire` function on `Client` blocks isn't always
    /// the easiest to work with. Typically you're using a jobserver to
    /// manage running other events in parallel! This means that you need to
    /// either (a) wait for an existing job to finish or (b) wait for a
    /// new token to become available.
    ///
    /// Unfortunately the blocking in `acquire` happens at the implementation
    /// layer of jobservers. On Unix this requires a blocking call to `read`
    /// and on Windows this requires one of the `WaitFor*` functions. Both
    /// of these situations aren't the easiest to deal with:
    ///
    /// * On Unix there's basically only one way to wake up a `read` early, and
    ///   that's through a signal. This is what the `make` implementation
    ///   itself uses, relying on `SIGCHLD` to wake up a blocking acquisition
    ///   of a new job token. Unfortunately nonblocking I/O is not an option
    ///   here, so it means that "waiting for one of two events" means that
    ///   the latter event must generate a signal! This is not always the case
    ///   on unix for all jobservers.
    ///
    /// * On Windows you'd have to basically use the `WaitForMultipleObjects`
    ///   which means that you've got to canonicalize all your event sources
    ///   into a `HANDLE` which also isn't the easiest thing to do
    ///   unfortunately.
    ///
    /// This function essentially attempts to ease these limitations by
    /// converting this `Client` into a helper thread spawned into this
    /// process. The application can then request that the helper thread
    /// acquires tokens and the provided closure will be invoked for each token
    /// acquired.
    ///
    /// The intention is that this function can be used to translate the event
    /// of a token acquisition into an arbitrary user-defined event.
    ///
    /// # Arguments
    ///
    /// This function will consume the `Client` provided to be transferred to
    /// the helper thread that is spawned. Additionally a closure `f` is
    /// provided to be invoked whenever a token is acquired.
    ///
    /// This closure is only invoked after calls to
    /// `HelperThread::request_token` have been made and a token itself has
    /// been acquired. If an error happens while acquiring the token then
    /// an error will be yielded to the closure as well.
    ///
    /// # Return Value
    ///
    /// This function will return an instance of the `HelperThread` structure
    /// which is used to manage the helper thread associated with this client.
    /// Through the `HelperThread` you'll request that tokens are acquired.
    /// When acquired, the closure provided here is invoked.
    ///
    /// When the `HelperThread` structure is returned it will be gracefully
    /// torn down, and the calling thread will be blocked until the thread is
    /// torn down (which should be prompt).
    ///
    /// # Errors
    ///
    /// This function may fail due to creation of the helper thread or
    /// auxiliary I/O objects to manage the helper thread. In any of these
    /// situations the error is propagated upwards.
    ///
    /// # Platform-specific behavior
    ///
    /// On Windows this function behaves pretty normally as expected, but on
    /// Unix the implementation is... a little heinous. As mentioned above
    /// we're forced into blocking I/O for token acquisition, namely a blocking
    /// call to `read`. We must be able to unblock this, however, to tear down
    /// the helper thread gracefully!
    ///
    /// Essentially what happens is that we'll send a signal to the helper
    /// thread spawned and rely on `EINTR` being returned to wake up the helper
    /// thread. This involves installing a global `SIGUSR1` handler that does
    /// nothing along with sending signals to that thread. This may cause
    /// odd behavior in some applications, so it's recommended to review and
    /// test thoroughly before using this.
    pub fn into_helper_thread<F>(self, f: F) -> io::Result<HelperThread>
    where
        F: FnMut(io::Result<Acquired>) + Send + 'static,
    {
        let state = Arc::new(HelperState::default());
        Ok(HelperThread {
            inner: Some(imp::spawn_helper(self, state.clone(), Box::new(f))?),
            state,
        })
    }

    /// Blocks the current thread until a token is acquired.
    ///
    /// This is the same as `acquire`, except that it doesn't return an RAII
    /// helper. If successful the process will need to guarantee that
    /// `release_raw` is called in the future.
    pub fn acquire_raw(&self) -> io::Result<()> {
        self.inner.acquire()?;
        Ok(())
    }

    /// Releases a jobserver token back to the original jobserver.
    ///
    /// This is intended to be paired with `acquire_raw` if it was called, but
    /// in some situations it could also be called to relinquish a process's
    /// implicit token temporarily which is then re-acquired later.
    pub fn release_raw(&self) -> io::Result<()> {
        self.inner.release(None)?;
        Ok(())
    }
}

impl Drop for Acquired {
    fn drop(&mut self) {
        drop(self.client.release(Some(&self.data)));
    }
}

/// Structure returned from `Client::into_helper_thread` to manage the lifetime
/// of the helper thread returned, see those associated docs for more info.
#[derive(Debug)]
pub struct HelperThread {
    inner: Option<imp::Helper>,
    state: Arc<HelperState>,
}

impl HelperThread {
    /// Request that the helper thread acquires a token, eventually calling the
    /// original closure with a token when it's available.
    ///
    /// For more information, see the docs on that function.
    pub fn request_token(&self) {
        // Indicate that there's one more request for a token and then wake up
        // the helper thread if it's sleeping.
        self.state.lock().requests += 1;
        self.state.cvar.notify_one();
    }
}

impl Drop for HelperThread {
    fn drop(&mut self) {
        // Flag that the producer half is done so the helper thread should exit
        // quickly if it's waiting. Wake it up if it's actually waiting
        self.state.lock().producer_done = true;
        self.state.cvar.notify_one();

        // ... and afterwards perform any thread cleanup logic
        self.inner.take().unwrap().join();
    }
}

impl HelperState {
    fn lock(&self) -> MutexGuard<'_, HelperInner> {
        self.lock.lock().unwrap_or_else(|e| e.into_inner())
    }

    fn for_each_request(&self, mut f: impl FnMut()) {
        let mut lock = self.lock();

        // We only execute while we could receive requests, but as soon as
        // that's `false` we're out of here.
        while !lock.producer_done {
            // If no one's requested a token then we wait for someone to
            // request a token.
            if lock.requests == 0 {
                lock = self.cvar.wait(lock).unwrap_or_else(|e| e.into_inner());
                continue;
            }

            // Consume the request for a token, and then actually acquire a
            // token after unlocking our lock (not that acquisition happens in
            // `f`). This ensures that we don't actually hold the lock if we
            // wait for a long time for a token.
            lock.requests -= 1;
            drop(lock);
            f();
            lock = self.lock();
        }
        lock.consumer_done = true;
        self.cvar.notify_one();
    }
}

#[cfg(unix)]
mod imp {
    extern crate libc;

    use std::fs::File;
    use std::io::{self, Read, Write};
    use std::mem;
    use std::os::unix::prelude::*;
    use std::process::Command;
    use std::ptr;
    use std::sync::atomic::{AtomicBool, Ordering};
    use std::sync::{Arc, Once};
    use std::thread::{self, Builder, JoinHandle};
    use std::time::Duration;

    use self::libc::c_int;

    #[derive(Debug)]
    pub struct Client {
        read: File,
        write: File,
    }

    #[derive(Debug)]
    pub struct Acquired {
        byte: u8,
    }

    impl Client {
        pub fn new(limit: usize) -> io::Result<Client> {
            let client = unsafe { Client::mk()? };
            // I don't think the character written here matters, but I could be
            // wrong!
            for _ in 0..limit {
                (&client.write).write(&[b'|'])?;
            }
            Ok(client)
        }

        unsafe fn mk() -> io::Result<Client> {
            let mut pipes = [0; 2];

            // Attempt atomically-create-with-cloexec if we can on Linux,
            // detected by using the `syscall` function in `libc` to try to work
            // with as many kernels/glibc implementations as possible.
            #[cfg(target_os = "linux")]
            {
                static PIPE2_AVAILABLE: AtomicBool = AtomicBool::new(true);
                if PIPE2_AVAILABLE.load(Ordering::SeqCst) {
                    match libc::syscall(libc::SYS_pipe2, pipes.as_mut_ptr(), libc::O_CLOEXEC) {
                        -1 => {
                            let err = io::Error::last_os_error();
                            if err.raw_os_error() == Some(libc::ENOSYS) {
                                PIPE2_AVAILABLE.store(false, Ordering::SeqCst);
                            } else {
                                return Err(err);
                            }
                        }
                        _ => return Ok(Client::from_fds(pipes[0], pipes[1])),
                    }
                }
            }

            cvt(libc::pipe(pipes.as_mut_ptr()))?;
            drop(set_cloexec(pipes[0], true));
            drop(set_cloexec(pipes[1], true));
            Ok(Client::from_fds(pipes[0], pipes[1]))
        }

        pub unsafe fn open(s: &str) -> Option<Client> {
            let mut parts = s.splitn(2, ',');
            let read = parts.next().unwrap();
            let write = match parts.next() {
                Some(s) => s,
                None => return None,
            };

            let read = match read.parse() {
                Ok(n) => n,
                Err(_) => return None,
            };
            let write = match write.parse() {
                Ok(n) => n,
                Err(_) => return None,
            };

            // Ok so we've got two integers that look like file descriptors, but
            // for extra sanity checking let's see if they actually look like
            // instances of a pipe before we return the client.
            //
            // If we're called from `make` *without* the leading + on our rule
            // then we'll have `MAKEFLAGS` env vars but won't actually have
            // access to the file descriptors.
            if is_valid_fd(read) && is_valid_fd(write) {
                drop(set_cloexec(read, true));
                drop(set_cloexec(write, true));
                Some(Client::from_fds(read, write))
            } else {
                None
            }
        }

        unsafe fn from_fds(read: c_int, write: c_int) -> Client {
            Client {
                read: File::from_raw_fd(read),
                write: File::from_raw_fd(write),
            }
        }

        pub fn acquire(&self) -> io::Result<Acquired> {
            // We don't actually know if the file descriptor here is set in
            // blocking or nonblocking mode. AFAIK all released versions of
            // `make` use blocking fds for the jobserver, but the unreleased
            // version of `make` doesn't. In the unreleased version jobserver
            // fds are set to nonblocking and combined with `pselect`
            // internally.
            //
            // Here we try to be compatible with both strategies. We
            // unconditionally expect the file descriptor to be in nonblocking
            // mode and if it happens to be in blocking mode then most of this
            // won't end up actually being necessary!
            //
            // We use `poll` here to block this thread waiting for read
            // readiness, and then afterwards we perform the `read` itself. If
            // the `read` returns that it would block then we start over and try
            // again.
            //
            // Also note that we explicitly don't handle EINTR here. That's used
            // to shut us down, so we otherwise punt all errors upwards.
            unsafe {
                let mut fd: libc::pollfd = mem::zeroed();
                fd.fd = self.read.as_raw_fd();
                fd.events = libc::POLLIN;
                loop {
                    fd.revents = 0;
                    if libc::poll(&mut fd, 1, -1) == -1 {
                        let e = io::Error::last_os_error();
                        match e.kind() {
                            io::ErrorKind::Interrupted => continue,
                            _ => return Err(e),
                        }
                    }
                    if fd.revents == 0 {
                        continue;
                    }
                    let mut buf = [0];
                    match (&self.read).read(&mut buf) {
                        Ok(1) => return Ok(Acquired { byte: buf[0] }),
                        Ok(_) => {
                            return Err(io::Error::new(
                                io::ErrorKind::Other,
                                "early EOF on jobserver pipe",
                            ))
                        }
                        Err(e) => match e.kind() {
                            io::ErrorKind::WouldBlock | io::ErrorKind::Interrupted => continue,
                            _ => return Err(e),
                        },
                    }
                }
            }
        }

        pub fn release(&self, data: Option<&Acquired>) -> io::Result<()> {
            // Note that the fd may be nonblocking but we're going to go ahead
            // and assume that the writes here are always nonblocking (we can
            // always quickly release a token). If that turns out to not be the
            // case we'll get an error anyway!
            let byte = data.map(|d| d.byte).unwrap_or(b'+');
            match (&self.write).write(&[byte])? {
                1 => Ok(()),
                _ => Err(io::Error::new(
                    io::ErrorKind::Other,
                    "failed to write token back to jobserver",
                )),
            }
        }

        pub fn string_arg(&self) -> String {
            format!("{},{} -j", self.read.as_raw_fd(), self.write.as_raw_fd())
        }

        pub fn configure(&self, cmd: &mut Command) {
            // Here we basically just want to say that in the child process
            // we'll configure the read/write file descriptors to *not* be
            // cloexec, so they're inherited across the exec and specified as
            // integers through `string_arg` above.
            let read = self.read.as_raw_fd();
            let write = self.write.as_raw_fd();
            unsafe {
                cmd.pre_exec(move || {
                    set_cloexec(read, false)?;
                    set_cloexec(write, false)?;
                    Ok(())
                });
            }
        }
    }

    #[derive(Debug)]
    pub struct Helper {
        thread: JoinHandle<()>,
        state: Arc<super::HelperState>,
    }

    pub(crate) fn spawn_helper(
        client: ::Client,
        state: Arc<super::HelperState>,
        mut f: Box<dyn FnMut(io::Result<::Acquired>) + Send>,
    ) -> io::Result<Helper> {
        static USR1_INIT: Once = Once::new();
        let mut err = None;
        USR1_INIT.call_once(|| unsafe {
            let mut new: libc::sigaction = mem::zeroed();
            new.sa_sigaction = sigusr1_handler as usize;
            new.sa_flags = libc::SA_SIGINFO as _;
            if libc::sigaction(libc::SIGUSR1, &new, ptr::null_mut()) != 0 {
                err = Some(io::Error::last_os_error());
            }
        });

        if let Some(e) = err.take() {
            return Err(e);
        }

        let state2 = state.clone();
        let thread = Builder::new().spawn(move || {
            state2.for_each_request(|| f(client.acquire()));
        })?;

        Ok(Helper { thread, state })
    }

    impl Helper {
        pub fn join(self) {
            let dur = Duration::from_millis(10);
            let mut state = self.state.lock();
            debug_assert!(state.producer_done);

            // We need to join our helper thread, and it could be blocked in one
            // of two locations. First is the wait for a request, but the
            // initial drop of `HelperState` will take care of that. Otherwise
            // it may be blocked in `client.acquire()`. We actually have no way
            // of interrupting that, so resort to `pthread_kill` as a fallback.
            // This signal should interrupt any blocking `read` call with
            // `io::ErrorKind::Interrupt` and cause the thread to cleanly exit.
            //
            // Note that we don'tdo this forever though since there's a chance
            // of bugs, so only do this opportunistically to make a best effort
            // at clearing ourselves up.
            for _ in 0..100 {
                if state.consumer_done {
                    break;
                }
                unsafe {
                    // Ignore the return value here of `pthread_kill`,
                    // apparently on OSX if you kill a dead thread it will
                    // return an error, but on other platforms it may not. In
                    // that sense we don't actually know if this will succeed or
                    // not!
                    libc::pthread_kill(self.thread.as_pthread_t() as _, libc::SIGUSR1);
                }
                state = self
                    .state
                    .cvar
                    .wait_timeout(state, dur)
                    .unwrap_or_else(|e| e.into_inner())
                    .0;
                thread::yield_now(); // we really want the other thread to run
            }

            // If we managed to actually see the consumer get done, then we can
            // definitely wait for the thread. Otherwise it's... of in the ether
            // I guess?
            if state.consumer_done {
                drop(self.thread.join());
            }
        }
    }

    fn is_valid_fd(fd: c_int) -> bool {
        unsafe {
            return libc::fcntl(fd, libc::F_GETFD) != -1;
        }
    }

    fn set_cloexec(fd: c_int, set: bool) -> io::Result<()> {
        unsafe {
            let previous = cvt(libc::fcntl(fd, libc::F_GETFD))?;
            let new = if set {
                previous | libc::FD_CLOEXEC
            } else {
                previous & !libc::FD_CLOEXEC
            };
            if new != previous {
                cvt(libc::fcntl(fd, libc::F_SETFD, new))?;
            }
            Ok(())
        }
    }

    fn cvt(t: c_int) -> io::Result<c_int> {
        if t == -1 {
            Err(io::Error::last_os_error())
        } else {
            Ok(t)
        }
    }

    extern "C" fn sigusr1_handler(
        _signum: c_int,
        _info: *mut libc::siginfo_t,
        _ptr: *mut libc::c_void,
    ) {
        // nothing to do
    }
}

#[cfg(windows)]
mod imp {
    use std::ffi::CString;
    use std::io;
    use std::process::Command;
    use std::ptr;
    use std::sync::Arc;
    use std::thread::{Builder, JoinHandle};

    #[derive(Debug)]
    pub struct Client {
        sem: Handle,
        name: String,
    }

    #[derive(Debug)]
    pub struct Acquired;

    type BOOL = i32;
    type DWORD = u32;
    type HANDLE = *mut u8;
    type LONG = i32;

    const ERROR_ALREADY_EXISTS: DWORD = 183;
    const FALSE: BOOL = 0;
    const INFINITE: DWORD = 0xffffffff;
    const SEMAPHORE_MODIFY_STATE: DWORD = 0x2;
    const SYNCHRONIZE: DWORD = 0x00100000;
    const TRUE: BOOL = 1;
    const WAIT_OBJECT_0: DWORD = 0;

    extern "system" {
        fn CloseHandle(handle: HANDLE) -> BOOL;
        fn SetEvent(hEvent: HANDLE) -> BOOL;
        fn WaitForMultipleObjects(
            ncount: DWORD,
            lpHandles: *const HANDLE,
            bWaitAll: BOOL,
            dwMilliseconds: DWORD,
        ) -> DWORD;
        fn CreateEventA(
            lpEventAttributes: *mut u8,
            bManualReset: BOOL,
            bInitialState: BOOL,
            lpName: *const i8,
        ) -> HANDLE;
        fn ReleaseSemaphore(
            hSemaphore: HANDLE,
            lReleaseCount: LONG,
            lpPreviousCount: *mut LONG,
        ) -> BOOL;
        fn CreateSemaphoreA(
            lpEventAttributes: *mut u8,
            lInitialCount: LONG,
            lMaximumCount: LONG,
            lpName: *const i8,
        ) -> HANDLE;
        fn OpenSemaphoreA(
            dwDesiredAccess: DWORD,
            bInheritHandle: BOOL,
            lpName: *const i8,
        ) -> HANDLE;
        fn WaitForSingleObject(hHandle: HANDLE, dwMilliseconds: DWORD) -> DWORD;
        #[link_name = "SystemFunction036"]
        fn RtlGenRandom(RandomBuffer: *mut u8, RandomBufferLength: u32) -> u8;
    }

    // Note that we ideally would use the `getrandom` crate, but unfortunately
    // that causes build issues when this crate is used in rust-lang/rust (see
    // rust-lang/rust#65014 for more information). As a result we just inline
    // the pretty simple Windows-specific implementation of generating
    // randomness.
    fn getrandom(dest: &mut [u8]) -> io::Result<()> {
        // Prevent overflow of u32
        for chunk in dest.chunks_mut(u32::max_value() as usize) {
            let ret = unsafe { RtlGenRandom(chunk.as_mut_ptr(), chunk.len() as u32) };
            if ret == 0 {
                return Err(io::Error::new(
                    io::ErrorKind::Other,
                    "failed to generate random bytes",
                ));
            }
        }
        Ok(())
    }

    impl Client {
        pub fn new(limit: usize) -> io::Result<Client> {
            // Try a bunch of random semaphore names until we get a unique one,
            // but don't try for too long.
            //
            // Note that `limit == 0` is a valid argument above but Windows
            // won't let us create a semaphore with 0 slots available to it. Get
            // `limit == 0` working by creating a semaphore instead with one
            // slot and then immediately acquire it (without ever releaseing it
            // back).
            for _ in 0..100 {
                let mut bytes = [0; 4];
                getrandom(&mut bytes)?;
                let mut name =
                    format!("__rust_jobserver_semaphore_{}\0", u32::from_ne_bytes(bytes));
                unsafe {
                    let create_limit = if limit == 0 { 1 } else { limit };
                    let r = CreateSemaphoreA(
                        ptr::null_mut(),
                        create_limit as LONG,
                        create_limit as LONG,
                        name.as_ptr() as *const _,
                    );
                    if r.is_null() {
                        return Err(io::Error::last_os_error());
                    }
                    let handle = Handle(r);

                    let err = io::Error::last_os_error();
                    if err.raw_os_error() == Some(ERROR_ALREADY_EXISTS as i32) {
                        continue;
                    }
                    name.pop(); // chop off the trailing nul
                    let client = Client {
                        sem: handle,
                        name: name,
                    };
                    if create_limit != limit {
                        client.acquire()?;
                    }
                    return Ok(client);
                }
            }

            Err(io::Error::new(
                io::ErrorKind::Other,
                "failed to find a unique name for a semaphore",
            ))
        }

        pub unsafe fn open(s: &str) -> Option<Client> {
            let name = match CString::new(s) {
                Ok(s) => s,
                Err(_) => return None,
            };

            let sem = OpenSemaphoreA(SYNCHRONIZE | SEMAPHORE_MODIFY_STATE, FALSE, name.as_ptr());
            if sem.is_null() {
                None
            } else {
                Some(Client {
                    sem: Handle(sem),
                    name: s.to_string(),
                })
            }
        }

        pub fn acquire(&self) -> io::Result<Acquired> {
            unsafe {
                let r = WaitForSingleObject(self.sem.0, INFINITE);
                if r == WAIT_OBJECT_0 {
                    Ok(Acquired)
                } else {
                    Err(io::Error::last_os_error())
                }
            }
        }

        pub fn release(&self, _data: Option<&Acquired>) -> io::Result<()> {
            unsafe {
                let r = ReleaseSemaphore(self.sem.0, 1, ptr::null_mut());
                if r != 0 {
                    Ok(())
                } else {
                    Err(io::Error::last_os_error())
                }
            }
        }

        pub fn string_arg(&self) -> String {
            self.name.clone()
        }

        pub fn configure(&self, _cmd: &mut Command) {
            // nothing to do here, we gave the name of our semaphore to the
            // child above
        }
    }

    #[derive(Debug)]
    struct Handle(HANDLE);
    // HANDLE is a raw ptr, but we're send/sync
    unsafe impl Sync for Handle {}
    unsafe impl Send for Handle {}

    impl Drop for Handle {
        fn drop(&mut self) {
            unsafe {
                CloseHandle(self.0);
            }
        }
    }

    #[derive(Debug)]
    pub struct Helper {
        event: Arc<Handle>,
        thread: JoinHandle<()>,
    }

    pub(crate) fn spawn_helper(
        client: ::Client,
        state: Arc<super::HelperState>,
        mut f: Box<dyn FnMut(io::Result<::Acquired>) + Send>,
    ) -> io::Result<Helper> {
        let event = unsafe {
            let r = CreateEventA(ptr::null_mut(), TRUE, FALSE, ptr::null());
            if r.is_null() {
                return Err(io::Error::last_os_error());
            } else {
                Handle(r)
            }
        };
        let event = Arc::new(event);
        let event2 = event.clone();
        let thread = Builder::new().spawn(move || {
            let objects = [event2.0, client.inner.sem.0];
            state.for_each_request(|| {
                const WAIT_OBJECT_1: u32 = WAIT_OBJECT_0 + 1;
                match unsafe { WaitForMultipleObjects(2, objects.as_ptr(), FALSE, INFINITE) } {
                    WAIT_OBJECT_0 => return,
                    WAIT_OBJECT_1 => f(Ok(::Acquired {
                        client: client.inner.clone(),
                        data: Acquired,
                    })),
                    _ => f(Err(io::Error::last_os_error())),
                }
            });
        })?;
        Ok(Helper { thread, event })
    }

    impl Helper {
        pub fn join(self) {
            // Unlike unix this logic is much easier. If our thread was blocked
            // in waiting for requests it should already be woken up and
            // exiting. Otherwise it's waiting for a token, so we wake it up
            // with a different event that it's also waiting on here. After
            // these two we should be guaranteed the thread is on its way out,
            // so we can safely `join`.
            let r = unsafe { SetEvent(self.event.0) };
            if r == 0 {
                panic!("failed to set event: {}", io::Error::last_os_error());
            }
            drop(self.thread.join());
        }
    }
}

#[cfg(not(any(unix, windows)))]
mod imp {
    use std::io;
    use std::process::Command;
    use std::sync::{Arc, Condvar, Mutex};
    use std::thread::{Builder, JoinHandle};

    #[derive(Debug)]
    pub struct Client {
        inner: Arc<Inner>,
    }

    #[derive(Debug)]
    struct Inner {
        count: Mutex<usize>,
        cvar: Condvar,
    }

    #[derive(Debug)]
    pub struct Acquired(());

    impl Client {
        pub fn new(limit: usize) -> io::Result<Client> {
            Ok(Client {
                inner: Arc::new(Inner {
                    count: Mutex::new(limit),
                    cvar: Condvar::new(),
                }),
            })
        }

        pub unsafe fn open(_s: &str) -> Option<Client> {
            None
        }

        pub fn acquire(&self) -> io::Result<Acquired> {
            let mut lock = self.inner.count.lock().unwrap_or_else(|e| e.into_inner());
            while *lock == 0 {
                lock = self
                    .inner
                    .cvar
                    .wait(lock)
                    .unwrap_or_else(|e| e.into_inner());
            }
            *lock -= 1;
            Ok(Acquired(()))
        }

        pub fn release(&self, _data: Option<&Acquired>) -> io::Result<()> {
            let mut lock = self.inner.count.lock().unwrap_or_else(|e| e.into_inner());
            *lock += 1;
            drop(lock);
            self.inner.cvar.notify_one();
            Ok(())
        }

        pub fn string_arg(&self) -> String {
            panic!(
                "On this platform there is no cross process jobserver support,
                 so Client::configure is not supported."
            );
        }

        pub fn configure(&self, _cmd: &mut Command) {
            unreachable!();
        }
    }

    #[derive(Debug)]
    pub struct Helper {
        thread: JoinHandle<()>,
    }

    pub(crate) fn spawn_helper(
        client: ::Client,
        state: Arc<super::HelperState>,
        mut f: Box<dyn FnMut(io::Result<::Acquired>) + Send>,
    ) -> io::Result<Helper> {
        let thread = Builder::new().spawn(move || {
            state.for_each_request(|| f(client.acquire()));
        })?;

        Ok(Helper { thread: thread })
    }

    impl Helper {
        pub fn join(self) {
            // TODO: this is not correct if the thread is blocked in
            // `client.acquire()`.
            drop(self.thread.join());
        }
    }
}

#[test]
fn no_helper_deadlock() {
    let x = crate::Client::new(32).unwrap();
    let _y = x.clone();
    std::mem::drop(x.into_helper_thread(|_| {}).unwrap());
}