1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
// Copyright 2015 The Rust Project Developers. See the COPYRIGHT
// file at the top-level directory of this distribution and at
// http://rust-lang.org/COPYRIGHT.
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.

//! Bindings for jemalloc as an allocator
//!
//! This crate provides bindings to jemalloc as a memory allocator for Rust.
//! This crate mainly exports, one type, `Jemalloc`, which implements the
//! `Alloc` trait and is suitable both as a memory allocator and as a
//! global allocator.

#![feature(allocator_api)]
#![deny(missing_docs)]

extern crate jemalloc_sys as ffi;
extern crate libc;

use std::mem;
use std::ptr;
use std::heap::{Alloc, Layout, Excess, CannotReallocInPlace, AllocErr, System};

use libc::{c_int, c_void};

// The minimum alignment guaranteed by the architecture. This value is used to
// add fast paths for low alignment values. In practice, the alignment is a
// constant at the call site and the branch will be optimized out.
#[cfg(all(any(target_arch = "arm",
              target_arch = "mips",
              target_arch = "mipsel",
              target_arch = "powerpc")))]
const MIN_ALIGN: usize = 8;
#[cfg(all(any(target_arch = "x86",
              target_arch = "x86_64",
              target_arch = "aarch64",
              target_arch = "powerpc64",
              target_arch = "powerpc64le")))]
const MIN_ALIGN: usize = 16;

// MALLOCX_ALIGN(a) macro
fn mallocx_align(a: usize) -> c_int {
    a.trailing_zeros() as c_int
}

fn align_to_flags(align: usize) -> c_int {
    if align <= MIN_ALIGN {
        0
    } else {
        mallocx_align(align)
    }
}

/// Handle to the jemalloc allocator
///
/// This type and a reference to this type both implement the `Alloc` trait,
///
/// allowing usage of this `Jemalloc` type both in collections and as a global
/// allocator.
pub struct Jemalloc;

unsafe impl Alloc for Jemalloc {
    #[inline]
    unsafe fn alloc(&mut self, layout: Layout) -> Result<*mut u8, AllocErr> {
        (&*self).alloc(layout)
    }

    #[inline]
    unsafe fn alloc_zeroed(&mut self, layout: Layout)
        -> Result<*mut u8, AllocErr>
    {
        (&*self).alloc_zeroed(layout)
    }

    #[inline]
    unsafe fn dealloc(&mut self, ptr: *mut u8, layout: Layout) {
        (&*self).dealloc(ptr, layout)
    }

    #[inline]
    unsafe fn realloc(&mut self,
                      ptr: *mut u8,
                      old_layout: Layout,
                      new_layout: Layout) -> Result<*mut u8, AllocErr> {
        (&*self).realloc(ptr, old_layout, new_layout)
    }

    fn oom(&mut self, err: AllocErr) -> ! {
        (&*self).oom(err)
    }

    #[inline]
    fn usable_size(&self, layout: &Layout) -> (usize, usize) {
        (&self).usable_size(layout)
    }

    #[inline]
    unsafe fn alloc_excess(&mut self, layout: Layout) -> Result<Excess, AllocErr> {
        (&*self).alloc_excess(layout)
    }

    #[inline]
    unsafe fn realloc_excess(&mut self,
                             ptr: *mut u8,
                             layout: Layout,
                             new_layout: Layout) -> Result<Excess, AllocErr> {
        (&*self).realloc_excess(ptr, layout, new_layout)
    }

    #[inline]
    unsafe fn grow_in_place(&mut self,
                            ptr: *mut u8,
                            layout: Layout,
                            new_layout: Layout) -> Result<(), CannotReallocInPlace> {
        (&*self).grow_in_place(ptr, layout, new_layout)
    }

    #[inline]
    unsafe fn shrink_in_place(&mut self,
                              ptr: *mut u8,
                              layout: Layout,
                              new_layout: Layout) -> Result<(), CannotReallocInPlace> {
        (&*self).shrink_in_place(ptr, layout, new_layout)
    }
}

unsafe impl<'a> Alloc for &'a Jemalloc {
    #[inline]
    unsafe fn alloc(&mut self, layout: Layout) -> Result<*mut u8, AllocErr> {
        let flags = align_to_flags(layout.align());
        let ptr = ffi::mallocx(layout.size(), flags);
        if ptr.is_null() {
            Err(AllocErr::Exhausted { request: layout })
        } else {
            Ok(ptr as *mut u8)
        }
    }

    #[inline]
    unsafe fn alloc_zeroed(&mut self, layout: Layout)
        -> Result<*mut u8, AllocErr>
    {
        let ptr = if layout.align() <= MIN_ALIGN {
            ffi::calloc(layout.size(), 1)
        } else {
            let flags = align_to_flags(layout.align()) | ffi::MALLOCX_ZERO;
            ffi::mallocx(layout.size(), flags)
        };
        if ptr.is_null() {
            Err(AllocErr::Exhausted { request: layout })
        } else {
            Ok(ptr as *mut u8)
        }
    }

    #[inline]
    unsafe fn dealloc(&mut self, ptr: *mut u8, layout: Layout) {
        let flags = align_to_flags(layout.align());
        ffi::sdallocx(ptr as *mut c_void, layout.size(), flags)
    }

    #[inline]
    unsafe fn realloc(&mut self,
                      ptr: *mut u8,
                      old_layout: Layout,
                      new_layout: Layout) -> Result<*mut u8, AllocErr> {
        if old_layout.align() != new_layout.align() {
            return Err(AllocErr::Unsupported { details: "cannot change align" })
        }
        let flags = align_to_flags(new_layout.align());
        let ptr = ffi::rallocx(ptr as *mut c_void, new_layout.size(), flags);
        if ptr.is_null() {
            Err(AllocErr::Exhausted { request: new_layout })
        } else {
            Ok(ptr as *mut u8)
        }
    }

    fn oom(&mut self, err: AllocErr) -> ! {
        System.oom(err)
    }

    #[inline]
    fn usable_size(&self, layout: &Layout) -> (usize, usize) {
        let flags = align_to_flags(layout.align());
        unsafe {
            let max = ffi::nallocx(layout.size(), flags);
            (layout.size(), max)
        }
    }

    #[inline]
    unsafe fn grow_in_place(&mut self,
                            ptr: *mut u8,
                            old_layout: Layout,
                            new_layout: Layout) -> Result<(), CannotReallocInPlace> {
        self.shrink_in_place(ptr, old_layout, new_layout)
    }

    #[inline]
    unsafe fn shrink_in_place(&mut self,
                              ptr: *mut u8,
                              old_layout: Layout,
                              new_layout: Layout) -> Result<(), CannotReallocInPlace> {
        if old_layout.align() != new_layout.align() {
            return Err(CannotReallocInPlace)
        }
        let flags = align_to_flags(new_layout.align());
        let size = ffi::xallocx(ptr as *mut c_void, new_layout.size(), 0, flags);
        if size >= new_layout.size() {
            Err(CannotReallocInPlace)
        } else {
            Ok(())
        }
    }
}

/// Fetch the value of options `name`.
///
/// Please note that if you want to fetch a string, use char* instead of &str or
/// cstring.
pub unsafe fn mallctl_fetch<T>(name: &[u8], t: &mut T) -> Result<(), i32> {
    // make sure name is a valid c string.
    if name.is_empty() || *name.last().unwrap() != 0 {
        return Err(libc::EINVAL);
    }
    let mut t_size = mem::size_of::<T>();
    let t_ptr = t as *mut T as *mut _;
    let code = ffi::mallctl(name.as_ptr() as *const _,
                            t_ptr,
                            &mut t_size,
                            ptr::null_mut(),
                            0);
    if code != 0 {
        return Err(code);
    }
    Ok(())
}

/// Set a value to option `name`.
///
/// Please note that if you want to set a string, use char* instead of &str or
/// cstring.
pub unsafe fn mallctl_set<T>(name: &[u8], mut t: T) -> Result<(), i32> {
    // make sure name is a valid c string.
    if name.is_empty() || *name.last().unwrap() != 0 {
        return Err(libc::EINVAL);
    }
    let size = mem::size_of::<T>();
    let code = ffi::mallctl(name.as_ptr() as *const _,
                            ptr::null_mut(),
                            ptr::null_mut(),
                            &mut t as *mut T as *mut _,
                            size);
    if code != 0 {
        return Err(code);
    }
    Ok(())
}