1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
use std::fmt;

/// An iterator over a received bit stream.
#[derive(Clone)]
pub struct BitIter<'a> {
    buf: &'a [u8],
    next_bit: u8,
    bits_left: usize,
}

impl<'a> BitIter<'a> {
    pub(crate) fn new(buf: &'a [u8], total_bits: usize) -> Self {
        assert!(
            buf.len() * 8 >= total_bits,
            "cannot pull {} bits out of {} bytes",
            total_bits,
            buf.len()
        );

        Self {
            buf,
            next_bit: 0,
            bits_left: total_bits,
        }
    }

    /// Returns the number of bits left in `self`.
    pub fn bits_left(&self) -> usize {
        self.bits_left
    }

    /// Splits off another `BitIter` from `self`s current position that will return `count` bits.
    ///
    /// After this call, `self` will be advanced by `count` bits.
    pub fn split_off(&mut self, count: usize) -> BitIter<'a> {
        assert!(count <= self.bits_left);
        let other = Self {
            buf: self.buf,
            next_bit: self.next_bit,
            bits_left: count,
        };

        let bytes = count / 8;
        let frac_bits = (count % 8) as u8;
        self.buf = &self.buf[bytes..];
        let bits_left = 7 - self.next_bit;
        if bits_left >= frac_bits {
            self.next_bit += frac_bits;
        } else {
            self.buf = &self.buf[1..];
            self.next_bit = frac_bits - bits_left;
        }
        self.bits_left -= count;
        other
    }
}

impl Iterator for BitIter<'_> {
    type Item = bool;

    fn next(&mut self) -> Option<bool> {
        if self.bits_left > 0 {
            let byte = self.buf.first().unwrap();
            let bit = byte & (1 << self.next_bit) != 0;
            if self.next_bit < 7 {
                self.next_bit += 1;
            } else {
                self.next_bit = 0;
                self.buf = &self.buf[1..];
            }

            self.bits_left -= 1;
            Some(bit)
        } else {
            None
        }
    }

    fn size_hint(&self) -> (usize, Option<usize>) {
        (self.bits_left, Some(self.bits_left))
    }
}

impl ExactSizeIterator for BitIter<'_> {}

impl fmt::Debug for BitIter<'_> {
    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
        let s = self
            .clone()
            .map(|bit| if bit { '1' } else { '0' })
            .collect::<String>();
        write!(f, "BitIter({})", s)
    }
}

pub trait IteratorExt: Sized {
    fn collapse_bytes(self) -> ByteIter<Self>;
}

impl<I: Iterator<Item = bool>> IteratorExt for I {
    fn collapse_bytes(self) -> ByteIter<Self> {
        ByteIter { inner: self }
    }
}

pub struct ByteIter<I> {
    inner: I,
}

impl<I: Iterator<Item = bool>> Iterator for ByteIter<I> {
    type Item = u8;

    fn next(&mut self) -> Option<u8> {
        // Collapse 8 bits from `inner` into a byte (LSb first).
        let mut byte = 0;
        let mut empty = true;
        for pos in 0..8 {
            let bit = if let Some(bit) = self.inner.next() {
                bit
            } else {
                break;
            };
            empty = false;
            let mask = if bit { 1 } else { 0 } << pos;
            byte |= mask;
        }

        if empty {
            None
        } else {
            Some(byte)
        }
    }
}

#[cfg(test)]
mod tests {
    use super::*;

    #[test]
    fn collapse_bytes() {
        fn collapse(v: Vec<bool>) -> Vec<u8> {
            v.into_iter().collapse_bytes().collect()
        }

        assert_eq!(collapse(vec![]), vec![]);
        assert_eq!(collapse(vec![true]), vec![0x01]);
        assert_eq!(collapse(vec![false, true]), vec![0x02]);
        assert_eq!(collapse(vec![true, false]), vec![0x01]);
        assert_eq!(collapse(vec![false]), vec![0x00]);
        assert_eq!(collapse(vec![false; 8]), vec![0x00]);
        assert_eq!(collapse(vec![true; 8]), vec![0xFF]);
        assert_eq!(collapse(vec![true; 7]), vec![0x7F]);
        assert_eq!(collapse(vec![true; 9]), vec![0xFF, 0x01]);
    }

    #[test]
    fn bit_iter() {
        fn bit_iter(b: Vec<u8>, num: usize) -> Vec<bool> {
            BitIter::new(&b, num).collect()
        }

        assert_eq!(bit_iter(vec![], 0), vec![]);
        assert_eq!(bit_iter(vec![0xFF], 0), vec![]);
        assert_eq!(bit_iter(vec![0xFF, 0xFF], 0), vec![]);
        assert_eq!(bit_iter(vec![0xFF], 1), vec![true]);
        assert_eq!(bit_iter(vec![0x00], 1), vec![false]);
        assert_eq!(bit_iter(vec![0x01], 1), vec![true]);
        assert_eq!(bit_iter(vec![0x01], 2), vec![true, false]);
        assert_eq!(bit_iter(vec![0x02], 2), vec![false, true]);
        assert_eq!(bit_iter(vec![0x02], 3), vec![false, true, false]);

        assert_eq!(
            bit_iter(vec![0x01, 0x01], 9),
            vec![true, false, false, false, false, false, false, false, true]
        );
    }

    #[test]
    fn bit_iter_split_off() {
        fn split(b: Vec<u8>, split: usize, total: usize) -> (Vec<bool>, Vec<bool>) {
            let mut bits = BitIter::new(&b, total);
            let first = bits.split_off(split);
            let (first, second) = (first.collect::<Vec<_>>(), bits.collect::<Vec<_>>());
            assert_eq!(first.len(), split);
            assert_eq!(second.len(), total - split);
            (first, second)
        }

        assert_eq!(split(vec![0xF0], 4, 8), (vec![false; 4], vec![true; 4]));
        assert_eq!(
            split(vec![0xF0], 5, 8),
            (vec![false, false, false, false, true], vec![true; 3])
        );
        assert_eq!(
            split(vec![0xF0], 3, 8),
            (vec![false; 3], vec![false, true, true, true, true])
        );

        assert_eq!(
            split(vec![0xF0, 0x01], 4, 9),
            (vec![false; 4], vec![true; 5])
        );
        assert_eq!(
            split(vec![0xF0, 0xFE], 4, 9),
            (vec![false; 4], vec![true, true, true, true, false])
        );

        assert_eq!(
            split(vec![0xFF, 0x01], 9, 16),
            (vec![true; 9], vec![false; 7])
        );
    }
}